scholarly journals Surface–atmosphere fluxes of volatile organic compounds in Beijing

2020 ◽  
Vol 20 (23) ◽  
pp. 15101-15125
Author(s):  
W. Joe F. Acton ◽  
Zhonghui Huang ◽  
Brian Davison ◽  
Will S. Drysdale ◽  
Pingqing Fu ◽  
...  

Abstract. Mixing ratios of volatile organic compounds (VOCs) were recorded in two field campaigns in central Beijing as part of the Air Pollution and Human Health in a Chinese Megacity (APHH) project. These data were used to calculate, for the first time in Beijing, the surface–atmosphere fluxes of VOCs using eddy covariance, giving a top-down estimation of VOC emissions from a central area of the city. The results were then used to evaluate the accuracy of the Multi-resolution Emission Inventory for China (MEIC). The APHH winter and summer campaigns took place in November and December 2016 and May and June 2017, respectively. The largest VOC fluxes observed were of small oxygenated compounds such as methanol, ethanol + formic acid and acetaldehyde, with average emission rates of 8.31 ± 8.5, 3.97 ± 3.9 and 1.83 ± 2.0 nmol m−2 s−1, respectively, in the summer. A large flux of isoprene was observed in the summer, with an average emission rate of 5.31 ± 7.7 nmol m−2 s−1. While oxygenated VOCs made up 60 % of the molar VOC flux measured, when fluxes were scaled by ozone formation potential and peroxyacyl nitrate (PAN) formation potential the high reactivity of isoprene and monoterpenes meant that these species represented 30 % and 28 % of the flux contribution to ozone and PAN formation potential, respectively. Comparison of measured fluxes with the emission inventory showed that the inventory failed to capture the magnitude of VOC emissions at the local scale.

2020 ◽  
Author(s):  
W. Joe F. Acton ◽  
Zhonghui Huang ◽  
Brian Davison ◽  
Will S. Drysdale ◽  
Pingqing Fu ◽  
...  

Abstract. Air pollution in Beijing has a major impact on public health and is therefore of concern to both policy makers and the general public. Volatile organic compounds (VOCs) are emitted from both anthropogenic and biogenic sources in urban environments and play an important role in atmospheric chemistry and hence atmospheric pollution through the formation of secondary organic aerosol and tropospheric ozone. Fluxes and mixing ratios of VOCs were recorded in two field campaigns as part of the Air Pollution and Human Health in a Chinese Megacity (APHH) project at the Institute of Atmospheric Physics (IAP) meteorological tower in central Beijing. These measurements represent the first eddy covariance flux measurements of VOCs in Beijing giving a top down estimation of VOC emissions from a central area of the city. These were then used to validate the Multi-resolution Emission Inventory for China (MEIC). The APHH winter and summer campaigns took place in November and December 2016 and May and June 2017 respectively. The largest VOC fluxes observed were of small oxygenated compounds such as methanol, ethanol + formic acid and acetaldehyde, with average emission rates of 8.02, 3.88 and 1.76 nmol m−2 s−1 respectively recorded in the summer campaign. In addition a large flux of isoprene was observed in the summer with an average flux of 4.63 nmol m−2 s−1. While oxygenated VOCs made up 60 % of the molar VOC flux measured, when fluxes were scaled by ozone formation potential and peroxyacyl nitrate (PAN) formation potential the high reactivity of isoprene and monoterpenes meant that these species represented 30 and 28 % of the flux contribution to ozone and PAN formation potential respectively. Comparison of measured fluxes with the emission inventory showed that the inventory failed to capture VOC emission at the local scale.


2021 ◽  
Vol 21 (17) ◽  
pp. 13655-13666
Author(s):  
Ziwei Mo ◽  
Ru Cui ◽  
Bin Yuan ◽  
Huihua Cai ◽  
Brian C. McDonald ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) are important precursors of ozone (O3) and secondary organic aerosol (SOA), which play key roles in tropospheric chemistry. A huge amount of NMVOC emissions from solvent use are complicated by a wide spectrum of sources and species. This work presents a long-term NMVOC emission inventory of solvent use during 2000–2017 in China. Based on a mass (material) balance method, NMVOC emissions were estimated for six categories, including coatings, adhesives, inks, pesticides, cleaners, and personal care products. The results show that NMVOC emissions from solvent use in China increased rapidly from 2000 to 2014 then kept stable after 2014. The total emission increased from 1.6 Tg (1.2–2.2 Tg at 95 % confidence interval) in 2000 to 10.6 Tg (7.7–14.9 Tg) in 2017. The substantial growth is driven by the large demand for solvent products in both industrial and residential activities. However, increasing treatment facilities in the solvent-related factories in China restrained the continued growth of solvent NMVOC emissions in recent years. Rapidly developing and heavily industrialized provinces such as Jiangsu, Shandong, and Guangdong contributed significantly to the solvent use emissions. Oxygenated VOCs, alkanes, and aromatics were the main components, accounting for 42 %, 28 %, and 21 % of total NMVOC emissions in 2017, respectively. Our results and previous inventories are generally comparable within the estimation uncertainties (−27 %–52 %). However, there exist significant differences in the estimates of sub-categories. Personal care products were a significant and quickly rising source of NMVOCs, which were probably underestimated in previous inventories. Emissions from solvent use were growing faster compared with transportation and combustion emissions, which were relatively better controlled in China. Environmentally friendly products can reduce the NMVOC emissions from solvent use. Supposing all solvent-based products were substituted with water-based products, it would result in 37 %, 41 %, and 38 % reduction of emissions, ozone formation potential (OFP), and secondary organic aerosol formation potential (SOAP), respectively. These results indicate there is still large potential for NMVOC reduction by reducing the utilization of solvent-based products and implementation of end-of-pipe controls across industrial sectors.


2018 ◽  
Author(s):  
Congbo Song ◽  
Yan Liu ◽  
Shida Sun ◽  
Luna Sun ◽  
Yanjie Zhang ◽  
...  

Abstract. Vehicular emission is a key contributor to ambient volatile organic compounds (VOCs) and NOx in Chinese megacities. However, the information of real-world emission factors (EFs) for a typical urban fleet is still limited, hindering the development of a more reliable emission inventory in China. Based on a more-than-two-week (August 8–24, 2017) tunnel test in urban Tianjin in northern China, and on the use of a statistical regression model, the Positive Matrix Factorization (PMF) receptor model, and the Calculate Emissions from Road Transport (COPERT) IV model, characteristics of vehicular VOCs-NOx-CO emissions were analyzed systematically. The fleet-average EFs (pollutant: downslope, upslope, and overall in mg km−1 veh−1) were estimated respectively as follows: (NO: 61.92 ± 72.46, 158.58 ± 73.48, 97.52 ± 69.84), (NO2: 16.52 ± 11.49, 23.98 ± 20.14, 15.86 ± 9.38), (NOx: 79.45 ± 78.43, 181.22 ± 88.29, 116.56 ± 77.61), and (CO: 269.96 ± 342.38, 577.76 ± 382.22, 344.67 ± 250.01). The EFs of NO-NO2-NOx and CO from heavy-duty vehicles (or diesel vehicles) were differentiated from light-duty vehicles (or gasoline vehicles). The ratios (v / v) of NO2 to NOx in the primary vehicular exhaust were approximately 0.18 ± 0.09, 0.10 ± 0.22 and 0.10 ± 0.05 for downslope, upslope, and the entire tunnel, respectively. The fleet-average EF of the 99-target non-methane VOCs (NMVOCs) was 40.56 ± 12.18 mg km−1 veh−1, lower than the previous studies in China. The BTEX (benzene, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene) levels decreased by approximately 79 % when emission standards increased from China I to China V. The source profiles of NMVOCs from the tailpipe and evaporative emissions were resolved by the PMF model. The evaporative emissions accounted for nearly one-half of the total vehicular VOC emissions, indicating that evaporative and tailpipe emissions contributed equally to VOC emissions. The relative contributions of evaporative NMVOC emissions to total vehicular NMVOC emissions are temperature-dependent with the average increasing ratio of 7.55 % °C−1. The primary emission ratio (ER, m / m) of VOCs / NOx was approximately 2.04, suggesting that vehicular NOx and VOCs can be co-emitted with a proper ER. According to the vehicular ERs of VOCs / NOx in Tianjin (2000–2016) and China (2010–2030), as even more stringent emission standards are implemented in the future, the O3 chemical regimes were likely to be VOCs-limited (i.e., 8 : 1 threshold) for cities or regions where VOCs and NOx emissions are dominated by vehicular exhaust. Our study enriched the database on the fleet-average emission factors of on-road vehicles for emission inventory, air quality modeling, and health effects studies, provided implications for following O3 control in China from the view of primary emission, and highlighted the importance of further control of evaporative emissions.


2013 ◽  
Vol 13 (3) ◽  
pp. 6631-6679 ◽  
Author(s):  
B. Yuan ◽  
W. W. Hu ◽  
M. Shao ◽  
M. Wang ◽  
W T.. Chen ◽  
...  

Abstract. Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs) are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m−3 ppm−1 and SOA are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO) and low-NOx condition (6.5 μg m−3 ppm−1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (>C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD), indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0–13.7 Tg yr−1, with a fraction of at least 2.7 Tg yr−1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1277
Author(s):  
Soumitra Kumar Dinda ◽  
Kinnor Chattopadhyay

The refractory preheating process in oxygen furnaces is a dynamic input of energy in a chemically complex system requiring special attention to chemical emissions relative to permissible release limits. This particular industrial and regulatory interest is the emission of volatile organic compounds (VOC), given their detrimental impacts on human health. In the present work, a mathematical model was developed to predict the emission rates of volatile organics during the preheating of a 260-ton basic oxygen furnace. A numerical heat transfer model was developed using finite difference techniques to obtain the thermal profile and then integrated with chemical thermodynamics using FactSage 7.0 (CRCT, Polytechnique Montreal Quebec Canada, H3C 3A7). The parameters that affected VOC emissions were preheating process times, burner gas composition, heating rate, and burner geometry. Two different preheating procedures were compared, and emission rates were predicted with extended use of a top burner providing the greatest degree of emissions control. The mathematical model was validated against plant data with respect to average emission rates of CO, CO2, SOX, and NOX.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


2021 ◽  
Vol 13 (12) ◽  
pp. 6570
Author(s):  
Asma Akter Parlin ◽  
Monami Kondo ◽  
Noriaki Watanabe ◽  
Kengo Nakamura ◽  
Mizuki Yamada ◽  
...  

The quantitative understanding of the transport behavior of volatile organic compounds (VOCs) in near-surface soils is highly important in light of the potential impacts of soil VOC emissions on the air quality and climate. Previous studies have suggested that temperature changes affect the transport behavior; however, the effects are not well understood. Indeed, much larger changes in the VOC flux under in situ dynamic temperatures than those expected from the temperature dependence of the diffusion coefficients of VOCs in the air have been suggested but rarely investigated experimentally. Here, we present the results of a set of experiments on the upward vertical vapor-phase diffusive transport of benzene and trichloroethylene (TCE) in sandy soils with water contents ranging from an air-dried value to 10 wt% during sinusoidal temperature variation between 20 and 30 °C. In all experiments, the flux from the soil surface was correlated with the temperature, as expected. However, the changes in flux under wet conditions were unexpectedly large and increased with increasing water content; they were also larger for TCE, the volatility of which depended more strongly on the temperature. Additionally, the larger flux changes were accompanied by a recently discovered water-induced inverse correlation between temperature and flux into the overlying soil. These results demonstrated that the flux changes of VOCs under dynamic temperatures could be increased by volatilization-dissolution interactions of VOCs with water. Future extensive studies on this newly discovered phenomenon would contribute to a better understanding of the impacts of soil VOC emissions on the air quality and climate.


2011 ◽  
Vol 8 (1) ◽  
pp. 91 ◽  
Author(s):  
Cécile Gaimoz ◽  
Stéphane Sauvage ◽  
Valérie Gros ◽  
Frank Herrmann ◽  
Jonathan Williams ◽  
...  

Environmental context Volatile organic compounds are key compounds in atmospheric chemistry as precursors of ozone and secondary organic aerosols. To determine their impact at a megacity scale, a first important step is to characterise their sources. We present an estimate of volatile organic compound sources in Paris based on a combination of measurements and model results. The data suggest that the current emission inventory strongly overestimates the volatile organic compounds emitted from solvent industries, and thus needs to be corrected. Abstract A positive matrix factorisation model has been used for the determination of volatile organic compound (VOC) source contributions in Paris during an intensive campaign (May–June 2007). The major sources were traffic-related emissions (vehicle exhaust, 22% of the total mixing ratio of the measured VOCs, and fuel evaporation, 17%), with the remaining emissions from remote industrial sources (35%), natural gas and background (13%), local sources (7%), biogenic and fuel evaporation (5%) and wood-burning (2%). It was noted that the remote industrial contribution was highly dependent on the air-mass origin. During the period of oceanic influences (when only local and regional pollution was observed), this source made a relatively low contribution (<15%), whereas the source contribution linked to traffic was high (54%). During the period of continental influences (when additional continental pollution was observed), remote industrial sources played a dominant role, contributing up to 50% of measured VOCs. Finally, the positive matrix factorisation results obtained during the oceanic air mass-influenced period were compared with the local emission inventory. This comparison suggests that the VOC emission from solvent industries might be overestimated in the inventory, consistent with findings in other European cities.


Sign in / Sign up

Export Citation Format

Share Document