scholarly journals Volatile Organic Compound fluxes in a subarctic peatland and lake

2020 ◽  
Author(s):  
Roger Seco ◽  
Thomas Holst ◽  
Mikkel Sillesen Matzen ◽  
Andreas Westergaard-Nielsen ◽  
Tao Li ◽  
...  

Abstract. Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-level surface-atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in Northern Sweden during two contrasting periods: the peak growing season (mid July) and the senescent period post-growing season (September–October). In July, the fen was a net source of methanol, acetaldehyde, acetone, DMS, isoprene, and monoterpenes. All of these VOCs showed a diel cycle of emission with maxima around noon and isoprene dominated the fluxes (93 ± 22 µmol m−2 day−1, mean ± SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature (Q10 = 14.5) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to −6.7 ± 2.8 µmol m−2 day−1 for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to −19 ± 1.3 µmol m−2 day−1 of acetone in July and up to −8.5 ± 2.3 µmol m−2 day−1 of acetaldehyde in September. The deposition of both carbonyl compounds correlated with their atmospheric mixing ratios, with deposition velocities of −0.23 ± 0.01 and −0.68 ± 0.03 cm s−1 for acetone and acetaldehyde, respectively. Even though these VOC fluxes represented less than 0.5 % and less than 5 % of the CO2 and CH4 net carbon ecosystem exchange, respectively, VOCs alter the oxidation capacity of the atmosphere. Thus, understanding the response of their emissions to climate change is important for accurate prediction of the future climatic conditions in this rapidly warming area of the planet.

2020 ◽  
Vol 20 (21) ◽  
pp. 13399-13416
Author(s):  
Roger Seco ◽  
Thomas Holst ◽  
Mikkel Sillesen Matzen ◽  
Andreas Westergaard-Nielsen ◽  
Tao Li ◽  
...  

Abstract. Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate. We measured the ecosystem-level surface–atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in northern Sweden during two contrasting periods: the peak growing season (mid-July) and the senescent period post-growing season (September–October). In July, the fen was a net source of methanol, acetaldehyde, acetone, dimethyl sulfide, isoprene, and monoterpenes. All of these VOCs showed a diel cycle of emission with maxima around noon and isoprene dominated the fluxes (93±22 µmol m−2 d−1, mean ± SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature (Q10=14.5) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to -6.7±2.8 µmol m−2 d−1 for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to -19±1.3 µmol m−2 d−1 of acetone in July and up to -8.5±2.3 µmol m−2 d−1 of acetaldehyde in September. The deposition of both carbonyl compounds correlated with their atmospheric mixing ratios, with deposition velocities of -0.23±0.01 and -0.68±0.03 cm s−1 for acetone and acetaldehyde, respectively. Even though these VOC fluxes represented less than 0.5 % and less than 5 % of the CO2 and CH4 net carbon ecosystem exchange, respectively, VOCs alter the oxidation capacity of the atmosphere. Thus, understanding the response of their emissions to climate change is important for accurate prediction of the future climatic conditions in this rapidly warming area of the planet.


2020 ◽  
Author(s):  
Roger Seco ◽  
Thomas Holst ◽  
Andreas Westergaard-Nielsen ◽  
Tao Li ◽  
Tihomir Simin ◽  
...  

<p>Arctic climate is warming twice as much as the global average, due to a number of climate system feedbacks, including albedo change due to retreating snow cover and sea ice, and the forest cover expansion across the open tundra. Northern ecosystems are known to emit trace gases (e.g., methane and volatile organic compounds, VOCs) to the atmosphere, from sources as diverse as soils, vegetation and lakes. These trace gas fluxes are likely to show a trend towards greater emissions with climate warming.</p><p>Here we report ecosystem-level VOC fluxes from Stordalen Mire, a subarctic peatland complex with a high fraction of open pond and lake surfaces, underlain by discontinuous permafrost and located in the Subarctic Sweden (68º20' N, 19º03' E).</p><p>In 2018, we deployed two online mass spectrometers (PTR-TOF-MS) to measure rapid fluctuations in VOC mixing ratios and to quantify ecosystem-level fluxes with the eddy covariance technique. One of the instruments obtained a growing-season-long dataset of biogenic emissions from palsa mire vegetation dominated by mosses (e.g., <em>Sphagnum</em> spp.), graminoids (such as <em>Eriophorum</em> spp. and <em>Carex</em> spp.), dwarf shrubs (e.g. Empetrum spp. and Betula nana) surrounding the ICOS Sweden Abisko-Stordalen long-term measurement station. The second instrument measured VOC fluxes during two contrasting periods (the peak and the end of the growing season) from a subarctic lake and its adjacent fen, permafrost-free, minerotrophic wetland with vegetation dominated by tall graminoids, mainly <em>Carex rostrata</em> and <em>Eriophorum angustifolium</em>.</p><p>At both sites, isoprene was the dominant VOC emitted by vegetation, showing clear diurnal patterns along the season and especially during the peak of the growing season in July. At the ICOS Sweden station, isoprene fluxes exceeded 2 nmol m<sup>-2</sup> s<sup>-1</sup> on several days in July, with a July monthly average midday emission of 1 nmol m<sup>-2</sup> s<sup>-1</sup>. The fen site showed average midday emissions of 2 nmol m<sup>-2</sup> s<sup>-1</sup> during the peak growing season. Other VOCs emitted by vegetation at both sites in July were, with decreasing magnitude, methanol, acetone, acetaldehyde and monoterpenes. In contrast, acetaldehyde and acetone were not emitted but mostly deposited to the fen at the end of the season. In contrast to the wetland, the lake was a sink for acetaldehyde and acetone during all measurement periods.</p><p>Thermal imaging and spectral analysis of vegetation will be used to assess relationships between VOC fluxes, vegetation surface temperatures and phenology under varying environmental conditions.</p>


2020 ◽  
Vol 20 (12) ◽  
pp. 7179-7191 ◽  
Author(s):  
Chinmoy Sarkar ◽  
Alex B. Guenther ◽  
Jeong-Hoo Park ◽  
Roger Seco ◽  
Eliane Alves ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. Tropical forests are the largest source of the dominant BVOC emissions (e.g. isoprene and monoterpenes). In this study, we report isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at the Tapajós National Forest (2.857∘ S, 54.959∘ W), a primary rainforest in eastern Amazonia. Measurements were carried out from 1 to 16 June 2014, during the wet-to-dry transition season. During the measurement period, the measured daytime (06:00–18:00 LT) average isoprene mixing ratios and fluxes were 1.15±0.60 ppb and 0.55±0.71 mg C m−2 h−1, respectively, whereas the measured daytime average total monoterpene mixing ratios and fluxes were 0.14±0.10 ppb and 0.20±0.25 mg C m−2 h−1, respectively. Midday (10:00–14:00 LT) average isoprene and total monoterpene mixing ratios were 1.70±0.49 and 0.24±0.05 ppb, respectively, whereas midday average isoprene and monoterpene fluxes were 1.24±0.68 and 0.46±0.22 mg C m−2 h−1, respectively. Isoprene and total monoterpene emissions in Tapajós were correlated with ambient temperature and solar radiation. Significant correlation with sensible heat flux, SHF (r2=0.77), was also observed. Measured isoprene and monoterpene fluxes were strongly correlated with each other (r2=0.93). The MEGAN2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) model could simulate most of the observed diurnal variations (r2=0.7 to 0.8) but declined a little later in the evening for both isoprene and total monoterpene fluxes. The results also demonstrate the importance of site-specific vegetation emission factors (EFs) for accurately simulating BVOC fluxes in regional and global BVOC emission models.


2020 ◽  
Author(s):  
Hélène Angot ◽  
Katelyn McErlean ◽  
Lu Hu ◽  
Dylan B. Millet ◽  
Jacques Hueber ◽  
...  

Abstract. Rapid Arctic warming, a lengthening growing season, and increasing abundance of biogenic volatile organic compounds (BVOC)-emitting shrubs are all anticipated to increase atmospheric BVOCs in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38' N, 149°36' W) in northern Alaska during two back-to-back field campaigns (summers 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0–500 pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (~ 2 pptv). We further quantified the temperature dependence of isoprene emissions from local vegetation including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180–215 % emission increase in response to a 3–4 °C warming. The MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures below 30 °C. Above 30 °C, MEGAN2.1 predicts an isoprene emission plateau that is not observed in the enclosure flux measurements at TFS. More studies are needed to better constrain the warming response of isoprene and other BVOCs for a wide range of Arctic species.


2021 ◽  
Vol 21 (20) ◽  
pp. 15755-15770
Author(s):  
Deborah F. McGlynn ◽  
Laura E. R. Barry ◽  
Manuel T. Lerdau ◽  
Sally E. Pusede ◽  
Gabriel Isaacman-VanWertz

Abstract. Despite the significant contribution of biogenic volatile organic compounds (BVOCs) to organic aerosol formation and ozone production and loss, there are few long-term, year-round, ongoing measurements of their volume mixing ratios and quantification of their impacts on atmospheric reactivity. To address this gap, we present 1 year of hourly measurements of chemically resolved BVOCs between 15 September 2019 and 15 September 2020, collected at a research tower in Central Virginia in a mixed forest representative of ecosystems in the Southeastern US. Mixing ratios of isoprene, isoprene oxidation products, monoterpenes, and sesquiterpenes are described and examined for their impact on the hydroxy radical (OH), ozone, and nitrate reactivity. Mixing ratios of isoprene range from negligible in the winter to typical summertime 24 h averages of 4–6 ppb, while monoterpenes have more stable mixing ratios in the range of tenths of a part per billion up to ∼2 ppb year-round. Sesquiterpenes are typically observed at mixing ratios of <10 ppt, but this represents a lower bound in their abundance. In the growing season, isoprene dominates OH reactivity but is less important for ozone and nitrate reactivity. Monoterpenes are the most important BVOCs for ozone and nitrate reactivity throughout the year and for OH reactivity outside of the growing season. To better understand the impact of this compound class on OH, ozone, and nitrate reactivity, the role of individual monoterpenes is examined. Despite the dominant contribution of α-pinene to total monoterpene mass, the average reaction rate of the monoterpene mixture with atmospheric oxidants is between 25 % and 30 % faster than α-pinene due to the contribution of more reactive but less abundant compounds. A majority of reactivity comes from α-pinene and limonene (the most significant low-mixing-ratio, high-reactivity isomer), highlighting the importance of both mixing ratio and structure in assessing atmospheric impacts of emissions.


2013 ◽  
Vol 13 (11) ◽  
pp. 30187-30232 ◽  
Author(s):  
E. Bourtsoukidis ◽  
J. Williams ◽  
J. Kesselmeier ◽  
S. Jacobi ◽  
B. Bonn

Abstract. Biogenic volatile organic compounds (BVOC) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in Central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and Proton Transfer Reaction–Mass Spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids govern the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes that were emitted most strongly in April. We exploit the wide range of conditions experienced at the site to filter the dataset with a combination of temperature, ozone and absolute humidity values in order to derive the emission potential and temperature dependency development for the major chemical species investigated. A profound reduction of monoterpene emission potential (E30) and temperature dependency (β) was found under low temperature regimes, combined with low ozone levels (E30MT, LTLO3=56 ± 9.1 ng g(dw)−1 h−1, βMT,LTLO3=0.03±0.01 K−1) while a combination of both stresses was found to alter their emissions responses with respect to temperature substantially (E30MT,HTHO3=1420.1 ± 191.4 ng g(dw)−1 h−1, βMT,HTHO3=0.15 ± 0.02 K−1). Moreover, we have explored compound relationships under different atmospheric condition sets, addressing possible co-occurrence of emissions under specific conditions. Finally, we evaluate the temperature dependent algorithm that seems to describe the temperature dependent emissions. Highest emission deviations were observed for monoterpenes and these emission fluctuations were attributed to a fraction which is triggered by an additional light dependency.


2020 ◽  
Author(s):  
Chinmoy Sarkar ◽  
Alex B. Guenther ◽  
Jeong-Hoo Park ◽  
Roger Seco ◽  
Eliane Alves ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. Tropical forests are the largest source of the dominant BVOC emissions (e.g. isoprene and monoterpenes). In this study, we report isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at the Tapajós National Forest (−2.857°S, −54.959°W), a primary rainforest in eastern Amazonia. Measurements were carried out from 1–16 June 2014, during the wet to dry transition season. During the measurement period, the measured daytime (06:00–18:00 LT) average isoprene mixing ratios and fluxes were 1.15 ± 0.60 ppb and 0.55 ± 0.71 mg C m−2 h−1, respectively, whereas the measured daytime average total monoterpenes mixing ratios and fluxes were 0.14 ± 0.10 ppb and 0.20 ± 0.25 mg C m−2 h−1, respectively. Midday (10:00–14:00 LT) average isoprene and total monoterpenes mixing ratios were 1.70 ± 0.49 ppb and 0.24 ± 0.05 ppb, respectively whereas midday average isoprene and monoterpene fluxes were 1.24 ± 0.68 mg C m−2 h−1 and 0.46 ± 0.22 mg C m−2 h−1, respectively. Isoprene and total monoterpene emissions in Tapajós were correlated with ambient temperature and solar radiation. Significant correlation with sensible heat flux, SHF (r2 = 0.77), was also observed. Measured isoprene and monoterpene fluxes were strongly correlated with each other (r2 = 0.93). The MEGAN2.1 model could simulate most of the observed diurnal variations (r2 = 0.7 to 0.8) but declined a little later in the evening for both isoprene and total monoterpene fluxes. The results also demonstrate the importance of site-specific vegetation emission factors (EFs) for accurately simulating BVOC fluxes in regional and global BVOC emission models.


2021 ◽  
Author(s):  
Yang Liu ◽  
Simon Schallhart ◽  
Ditte Taipale ◽  
Toni Tykkä ◽  
Matti Räsänen ◽  
...  

Abstract. The East African lowland and highland areas consist of water-limited and humid ecosystems. The magnitude and seasonality of biogenic volatile organic compounds (BVOCs) emissions from these functionally contrasting ecosystems are limited due to a scarcity of direct observations. We measured mixing ratios of BVOCs from two contrasting ecosystems, humid highlands with agroforestry and dry lowlands with bushland, grassland, and agriculture mosaics, during both the rainy and dry seasons of 2019 in southern Kenya. We present the diurnal and seasonal characteristics of BVOC mixing ratios and their reactivity, and estimated emission factors (EFs) for certain BVOCs from the African lowland ecosystem based on field measurements. The most abundant BVOCs were isoprene and monoterpenoids (MTs), with isoprene contributing > 70 % of the total BVOC mixing ratio during daytime, while MTs accounted for > 50 % of the total BVOC mixing ratio during nighttime at both sites. The contributions of BVOCs to the local atmospheric chemistry were estimated by calculating the reactivity towards the hydroxyl radical (OH), ozone (O3), and the nitrate radical (NO3). Isoprene and MTs contributed the most to the reactivity of OH and NO3, while sesquiterpenes dominated the contribution of organic compounds to the reactivity of O3. The mixing ratio of isoprene measured in this study was lower to that measured in the relevant ecosystems in west and south Africa, while that of monoterpenoids was similar. Isoprene mixing ratios peaked daily between 16:00 and 20:00 with a maximum mixing ratio of 809 parts per trillion by volume (pptv) and 156 pptv in the highlands, and 115 pptv and 25 pptv in the lowlands, during the rainy and dry seasons, respectively. MT mixing ratios reached their daily maximum between midnight and early morning (usually 04:00 to 08:00) with mixing ratios of 254 pptv and 56 pptv in the highlands, and 89 pptv and 7 pptv in the lowlands, in the rainy and dry seasons, respectively. The dominant species within the MT group were limonene, α-pinene, and β-pinene. EFs for isoprene, MTs, and 2-methyl-3-buten-2-ol (MBO) were estimated using an inverse modeling approach. The estimated EFs for isoprene and β-pinene agreed very well with what is currently assumed in the world’s most extensively used biogenic emissions model, the Model of Emissions of Gases and Aerosols from Nature (MEGAN), for warm C4 grass, but the estimated EFs for MBO, α-pinene, and especially limonene, were significantly higher than that assumed in MEGAN for the relevant plant functional type. Additionally, our results indicate that the EF for limonene might be seasonally dependent in savanna ecosystems.


2021 ◽  
Author(s):  
Ekaterina Ezhova ◽  
Oleg Sizov ◽  
Petr Tsymbarovich ◽  
Andrey Soromotin ◽  
Nikolay Prihod'ko ◽  
...  

&lt;p&gt;Transition of arctic vegetation from tundra to shrubs and forest is an important process influencing global carbon budget. Transition is predicted due to warming and prolongation of the growing season but observations show that it is slower than expected. Fires are disturbances that could trigger a shift of biomes.&lt;/p&gt;&lt;p&gt;We studied the transition of dry tundra to forest and woodland in northwest Siberia for burned and background sites within the time interval of 60 years. We used meteorological data to estimate potential shifts in vegetation based on a bioclimatic model. To investigate fire and vegetation dynamics, we used historical and modern satellite imagery (Corona KH-4b, Landsat-5,7,8, Resurs-P, SPOT-6,7). We performed comparative analysis of vegetation using high-resolution satellite data from different years.&lt;/p&gt;&lt;p&gt;The growing season length increased by 20 days and the mean temperature of the growing season increased by 1&amp;#176;C making climatic conditions suitable for trees. We showed that ca 40% of the total study area experienced fires at least once during the last 60 years. Within this period, shift from dry tundra to tree-dominated vegetation occurred in 6-15% of the area in the non-disturbed sites compared to 40-85% of the area in the burned sites.&lt;/p&gt;


2021 ◽  
Vol 21 (19) ◽  
pp. 14761-14787
Author(s):  
Yang Liu ◽  
Simon Schallhart ◽  
Ditte Taipale ◽  
Toni Tykkä ◽  
Matti Räsänen ◽  
...  

Abstract. The East African lowland and highland areas consist of water-limited and humid ecosystems. The magnitude and seasonality of biogenic volatile organic compounds (BVOCs) emissions and concentrations from these functionally contrasting ecosystems are limited due to a scarcity of direct observations. We measured mixing ratios of BVOCs from two contrasting ecosystems, humid highlands with agroforestry and dry lowlands with bushland, grassland, and agriculture mosaics, during both the rainy and dry seasons of 2019 in southern Kenya. We present the diurnal and seasonal characteristics of BVOC mixing ratios and their reactivity and estimated emission factors (EFs) for certain BVOCs from the African lowland ecosystem based on field measurements. The most abundant BVOCs were isoprene and monoterpenoids (MTs), with isoprene contributing > 70 % of the total BVOC mixing ratio during daytime, while MTs accounted for > 50 % of the total BVOC mixing ratio during nighttime at both sites. The contributions of BVOCs to the local atmospheric chemistry were estimated by calculating the reactivity towards the hydroxyl radical (OH), ozone (O3), and the nitrate radical (NO3). Isoprene and MTs contributed the most to the reactivity of OH and NO3, while sesquiterpenes dominated the contribution of organic compounds to the reactivity of O3. The mixing ratio of isoprene measured in this study was lower than that measured in the relevant ecosystems in western and southern Africa, while that of monoterpenoids was similar. Isoprene mixing ratios peaked daily between 16:00 and 20:00 (all times are given as East Africa Time, UTC+3),​​​​​​​ with a maximum mixing ratio of 809 pptv (parts per trillion by volume) and 156 pptv in the highlands and 115 and 25 pptv in the lowlands during the rainy and dry seasons, respectively. MT mixing ratios reached their daily maximum between midnight and early morning (usually 04:00 to 08:00), with mixing ratios of 254 and 56 pptv in the highlands and 89 and 7 pptv in the lowlands in the rainy and dry seasons, respectively. The dominant species within the MT group were limonene, α-pinene, and β-pinene. EFs for isoprene, MTs, and 2-Methyl-3-buten-2-ol (MBO) were estimated using an inverse modeling approach. The estimated EFs for isoprene and β-pinene agreed very well with what is currently assumed in the world's most extensively used biogenic emissions model, the Model of Emissions of Gases and Aerosols from Nature (MEGAN), for warm C4 grass, but the estimated EFs for MBO, α-pinene, and especially limonene were significantly higher than that assumed in MEGAN for the relevant plant functional type. Additionally, our results indicate that the EF for limonene might be seasonally dependent in savanna ecosystems.


Sign in / Sign up

Export Citation Format

Share Document