scholarly journals Source apportionment and impact of long-range transport on carbonaceous aerosol particles in Central Germany during HCCT-2010

2020 ◽  
Author(s):  
Laurent Poulain ◽  
Benjamin Fahlbusch ◽  
Gerald Spindler ◽  
Konrad Müller ◽  
Dominik van Pinxteren ◽  
...  

Abstract. The identification of different sources of the carbonaceous aerosol (organics and black carbon) was investigated at a mountain forest site located in central Germany from September to October 2010 to characterize incoming air masses during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) experiment. The near-PM1 chemical composition, as measured by an Aerosol Mass Spectrometer (HR-ToF-AMS), was dominated by organics (OA, 41 %), followed by sulfate (19 %) and nitrate (18 %). Source apportionment of the OA fraction was performed using the Multilinear Engine approach (ME-2), resulting in the identification of five factors: Hydrocarbon-like OA (HOA, 3 % of OA mass), biomass burning OA (BBOA, 13 %), semi-volatile-like OA (SVOOA, 19 %), and two oxygenated OA (OOA) factors. The more-oxidized OOA (MO-OOA, 28 %) was interpreted as being influenced by aged polluted continental air masses, whereas the less-oxidized OOA (LO-OOA, 37 %) was found to be more linked to aged biogenic sources. Equivalent black carbon (eBC) measured by a multi-angle absorption photometer, MAAP, represented 10 % of the total PM. The eBC was clearly associated with the three factors HOA, BBOA, and MO-OOA (all together R2 = 0.83). Therefore, eBC's contribution to each factor was achieved using a multi-linear regression model. More than half of the eBC (52 %) was associated with long-range transport (i.e. MO-OOA), whereas liquid fuel eBC (35 %) and biomass burning eBC (13 %) were associated with local emissions leading to a complete apportionment of the carbonaceous aerosol. The separation between local and transported eBC was well supported by the mass size distribution of elemental carbon (EC) from Berner-impactor samples. Air masses with the strongest marine influence based on back trajectory analysis corresponded with a low particle mass concentration (6.4–7.5 µg m−3) and organic fraction (≈ 30 %). However, they also had the largest contribution of primary OA (HOA ≈ 4 % and BBOA 15–20 %), which was associated with local emissions. Continental air masses had the highest mass concentration (11.4–12.6 µg m−3) and a larger fraction of oxygenated OA (≈ 45 %) indicated highly processed OA. The present results emphasize the key role played by long-range transport processes not only on the OA fraction but also on the eBC mass concentration and the importance of improving our knowledge on the identification of eBC sources.

2021 ◽  
Vol 21 (5) ◽  
pp. 3667-3684
Author(s):  
Laurent Poulain ◽  
Benjamin Fahlbusch ◽  
Gerald Spindler ◽  
Konrad Müller ◽  
Dominik van Pinxteren ◽  
...  

Abstract. The identification of different sources of the carbonaceous aerosol (organics and black carbon) was investigated at a mountain forest site located in central Germany from September to October 2010 to characterize incoming air masses during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) experiment. The near-PM1 chemical composition, as measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), was dominated by organic aerosol (OA; 41 %) followed by sulfate (19 %) and nitrate (18 %). Source apportionment of the OA fraction was performed using the multilinear engine (ME-2) approach, resulting in the identification of the following five factors: hydrocarbon-like OA (HOA; 3 % of OA mass), biomass burning OA (BBOA; 13 %), semi-volatile-like OA (SV-OOA; 19 %), and two oxygenated OA (OOA) factors. The more oxidized OOA (MO-OOA, 28 %) was interpreted as being influenced by aged, polluted continental air masses, whereas the less oxidized OOA (LO-OOA, 37 %) was found to be more linked to aged biogenic sources. Equivalent black carbon (eBC), measured by a multi-angle absorption photometer (MAAP) represented 10 % of the total particulate matter (PM). The eBC was clearly associated with HOA, BBOA, and MO-OOA factors (all together R2=0.83). Therefore, eBC's contribution to each factor was achieved using a multi-linear regression model. More than half of the eBC (52 %) was associated with long-range transport (i.e., MO-OOA), whereas liquid fuel eBC (35 %) and biomass burning eBC (13 %) were associated with local emissions, leading to a complete apportionment of the carbonaceous aerosol. The separation between local and transported eBC was well supported by the mass size distribution of elemental carbon (EC) from Berner impactor samples. Air masses with the strongest marine influence, based on back trajectory analysis, corresponded with a low particle mass concentration (6.4–7.5 µg m−3) and organic fraction (≈30 %). However, they also had the largest contribution of primary OA (HOA ≈ 4 % and BBOA 15 %–20 %), which was associated with local emissions. Continental air masses had the highest mass concentration (11.4–12.6 µg m−3), and a larger fraction of oxygenated OA (≈45 %) indicated highly processed OA. The present results emphasize the key role played by long-range transport processes not only in the OA fraction but also in the eBC mass concentration and the importance of improving our knowledge on the identification of eBC sources.


2017 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry-transport model GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and found that the simulated seasonal variations were improved by implementing an aging parameterization and reducing the wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Okhotsk Sea and East Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130°–180° E and 3–8 km altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km altitude due to uplifting during the long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was smaller than that from other large source regions such as Europe, Russia and North America. However, the East Asian contribution was most important for BC in the middle troposphere (41 %) and BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of the Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


2020 ◽  
Author(s):  
Xingchuan Yang ◽  
Chuanfeng Zhao ◽  
Yikun Yang ◽  
Xing Yan ◽  
Hao Fan

Abstract. Wildfires are an important contributor to atmospheric aerosols in Australia and could significantly affect regional and even global climate. This study investigates the impact of fire events on aerosol properties along with the long-range transport of biomass burning aerosols over Australia using multi-year measurements from Aerosol Robotic Network (AERONET) at ten sites over Australia, satellite dataset derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), reanalysis data from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and back-trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT). Strong correlation (0.62) was found between fire radiative power (FRP) and aerosol optical depth (AOD) over Australia, suggesting the significant contribution to aerosols from fires. The fire count, FRP, and AOD showed distinct and consistent interannual variations with high values during September–February (Biomass Burning period, BB period) and low values during March–August (non-Biomass Burning period, non-BB period) every year. The annual average contribution of carbonaceous, dust, sulfate and sea salt aerosols to total aerosol were 26.24 %, 23.38 %, 26.36 % and 24.02 %, respectively. The results from AERONET, MODIS, and MERRA-2 showed that AOD values significantly increased with fine mode aerosol dominated during BB period, especially in northern and southeastern Australia. Further, Carbonaceous aerosol was the main contributor to total aerosols during BB period, especially in September–December when carbonaceous aerosol contributed the most (30.08–42.91 %). The great fires during the BB period of 2019/2020 further demonstrated significant impact on aerosol properties, such as the extreme increase in AOD for most southeastern Australia, the dominance of fine particle aerosols, and the significant increase in carbonaceous and dust aerosols in southeastern and central Australia, respectively. Moreover, smoke was found as the dominant aerosol type detected at heights 2.5–12 km in southeastern Australia in December 2019 and at heights roughly from 6.2 to 12 km in January 2020. In contrast, dust was detected more frequently at heights from 2 to 5 km in November 2019, January, and February 2020. A case analysis revealed that significant changes in aerosol properties including aerosol loading, aerosol particle size, aerosol type in central Australia could be caused during the BB period of 2019/2020 due to the long-range transport of biomass burning aerosols from eastern and southern Australia.


2020 ◽  
Author(s):  
Mingfu Cai ◽  
Baoling Liang ◽  
Qibin Sun ◽  
Shengzhen Zhou ◽  
Bin Yuan ◽  
...  

Abstract. Aerosol particles in marine atmosphere have been shown to significantly affect cloud formation, atmospheric optical properties, and climate change. However, high temporal and spatial resolved atmospheric measurements over sea are currently sparse, limiting our understanding of aerosol properties in marine atmosphere. In this study, a ship-based cruise campaign was conducted over northern South China Sea (SCS) region (19°37′ N to 22°43′ N, 113°44′ E to 118°12′ E) during summertime 2018. Chemical compositions of the non-refractory PM1 (NR-PM1), particle number size distribution (PNSD) and size-resolved cloud condensation nuclei (CCN) activity (at supersaturation ss = 0.18 %, 0.34 %, and 0.59 %) were measured by a time-of-flight aerosol chemical speciation monitor (ToF-ACSM), and the combination of a cloud condensation nuclei counter (CCNc) and a scanning mobility particle sizer (SMPS), respectively. Overall, aerosol particles exhibited a unimodal distribution (centering at 60∼80 nm) and dominated by sulfate (~46 %) in the NR-PM1, similar to the characteristic of previously-reported background marine aerosols. Two polluted episodes were respectively observed at the beginning (P1, 6th–8th August) and at the end (P2, 25th–26th August) of the campaign and both were characterized by high particle number concentrations (NCN) which were shown to originate from local emissions or pollutants from long range transport. Two relatively clean periods (C1, 9th–10th and C2, 19th–21st August) prior to and after tropical storm Bebinca (11th–15th August) were also classified due to substantial removal of pollutants by strong winds and rainfalls accompanying with the storm. A value of about 0.4 for aerosol hygroscopicity parameter κ measured in this study falls in a range of values (i.e., 0.2–1.0) reported previously for urban atmosphere and for remote marine atmosphere. The concentrations of trace gases (i.e., O3, CO, NOX) and particles (NCN and NCCN at ss = 0.34 %) were elevated at the end of the campaign and decreased with the offshore distance, suggesting important impacts of anthropogenic emissions from the inland Pearl River Delta (PRD) region on the northern SCS. A good correlation between NOX concentration and NCN implies similar sources (e.g., heavy ship, traffic, and biomass burning) for NOx and particles. The results showed that the NCCN/NCN,tot and the κ values obtained from the CCNc measurement (ss = 0.34 %) had no clear correlation either with the offshore distance or with the concentrations of the particles. Back trajectory analysis showed that the air pollutants originated from local emissions and from inland China continent via long range transport during P1 and P2, respectively. In addition, the air was affected by air masses from southwest and from Indo-China Peninsula during the clean C1 and C2 periods respectively. Chemical composition measurements showed an increase of organic mass fraction and no obviously different κ values were obtained from CCN measurements during C2 and P2, implying that the air masses carried pollutants from local sources during long range transport from Indo-China Peninsula and from the inland China continent respectively during the above two periods. Our study highlights dynamical variations of particle properties and the impact of long range transport from the China continent and Indo-China Peninsula on the northern SCS region during summertime.


2015 ◽  
Vol 15 (9) ◽  
pp. 5047-5068 ◽  
Author(s):  
K. Dzepina ◽  
C. Mazzoleni ◽  
P. Fialho ◽  
S. China ◽  
B. Zhang ◽  
...  

Abstract. Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m−3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses of 9/25 were more aged and influenced by marine emissions, as indicated by the presence of organosulfates and other species characteristic of marine aerosol. The change in the air masses for the two samples was corroborated by the changes in ethane, propane, and ozone, morphology of particles, as well as by the FLEXPART retroplume simulations. This paper presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location and provides evidence of low oxygenation after long-range transport. We hypothesize this is a result of the selective removal of highly aged and polar species during long-range transport, because the aerosol underwent a combination of atmospheric processes during transport facilitating aqueous-phase removal (e.g., clouds processing) and fragmentation (e.g., photolysis) of components.


2017 ◽  
Vol 17 (17) ◽  
pp. 10515-10533 ◽  
Author(s):  
Kohei Ikeda ◽  
Hiroshi Tanimoto ◽  
Takafumi Sugita ◽  
Hideharu Akiyoshi ◽  
Yugo Kanaya ◽  
...  

Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry transport model, GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and examined the sensitivity of an aging parameterization and wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Sea of Okhotsk and eastern Siberia during winter and spring. We identified an important window area, which allowed a strong incoming of East Asian BC to the Arctic (130–180° E and 3–8 km of altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km of altitude due to uplifting during long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was lower than that from other large source regions such as Europe, Russia, and North America. However, the East Asian contribution was the most important for BC in the middle troposphere (41 %) and the BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska, and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.


2019 ◽  
Vol 244 ◽  
pp. 414-422 ◽  
Author(s):  
Katsushige Uranishi ◽  
Fumikazu Ikemori ◽  
Hikari Shimadera ◽  
Akira Kondo ◽  
Seiji Sugata

Sign in / Sign up

Export Citation Format

Share Document