scholarly journals Potential of future stratospheric ozone loss in the mid-latitudes under climate change and sulfate geoengineering

2020 ◽  
Author(s):  
Sabine Robrecht ◽  
Bärbel Vogel ◽  
Simone Tilmes ◽  
Rolf Müller

Abstract. The potential of heterogeneous chlorine activation in the mid-latitude lowermost stratosphere during summer is a matter of debate. The occurrence of heterogeneous chlorine activation through the presence of aerosol particles could cause ozone destruction. This chemical process requires low temperatures and is accelerated by an enhancement of the stratospheric water vapour and sulfate amount. In particular, the conditions present in the lowermost stratosphere during the North American Summer Monsoon season (NAM) are expected to be cold and moist enough for causing the occurrence of heterogeneous chlorine activation. Furthermore, the temperatures, the water vapour mixing ratio and the sulfate aerosol abundance are affected by future climate change and by the potential application of sulfate geoengineering. Hence, both future scenarios could promote this ozone destruction process. We investigate the likelihood for the occurrence of heterogeneous chlorine activation and its impact on ozone in the lowermost stratospheric mixing layer between tropospheric and stratospheric air above central North America (30.6–49.6° N, 72.25–124.75° W) in summer for conditions today, at the mid and at the end of the 21st century. Therefore, the results of the Geoengineering Large Ensemble Simulations (GLENS) for the lowermost stratospheric mixing layer between tropospheric and stratospheric air are considered together with 10 day box-model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In GLENS two future scenarios are simulated: the RCP8.5 climate change scenario and a geoengineering scenario, where sulfur is additionally injected in the stratosphere to keep the global mean surface temperature from changing. In the GLENS simulations, the mixing layer will warm and moisten in both future scenarios with a larger effect in the geoengineering scenario. The likelihood for chlorine activation to occur in the mixing layer is highest in the years 2040–2050 if geoengineering is applied, accounting for 3.3 %. In comparison, the likelihood for conditions today is 1.0 %. At the end of the 21st century, the likelihood of this ozone destruction process to occur decreases. We found that 0.1 % of the ozone mixing ratios in the mixing layer above central North America is destroyed for conditions today. A maximum ozone destruction of 0.3 % in the mixing layer occurs in the years 2040–2050 if geoengineering is applied. Comparing the southernmost latitude band (30–35° N) and the northernmost latitude band (44–49° N) of the considered region, we found a higher likelihood for the occurrence of heterogeneous chlorine activation in the southernmost latitude band, causing a higher impact on ozone as well. However, the ozone loss process is found to have a minor impact on the mid-latitude ozone column with not more than 0.1 DU today or in the future scenarios.

2021 ◽  
Vol 21 (4) ◽  
pp. 2427-2455
Author(s):  
Sabine Robrecht ◽  
Bärbel Vogel ◽  
Simone Tilmes ◽  
Rolf Müller

Abstract. The potential of heterogeneous chlorine activation in the midlatitude lowermost stratosphere during summer is a matter of debate. The occurrence of heterogeneous chlorine activation through the presence of aerosol particles could cause ozone destruction. This chemical process requires low temperatures and is accelerated by an enhancement of the stratospheric water vapour and sulfate amount. In particular, the conditions present in the lowermost stratosphere during the North American Summer Monsoon season (NAM) are expected to be cold and moist enough to cause the occurrence of heterogeneous chlorine activation. Furthermore, the temperatures, the water vapour mixing ratio and the sulfate aerosol abundance are affected by future global warming and by the potential application of sulfate geoengineering. Hence, both future scenarios could promote this ozone destruction process. We investigate the likelihood of the occurrence of heterogeneous chlorine activation and its impact on ozone in the lowermost-stratospheric mixing layer between tropospheric and stratospheric air above central North America (30.6–49.6∘ N, 72.25–124.75∘ W) in summer for conditions today, at the middle and at the end of the 21st century. Therefore, the results of the Geoengineering Large Ensemble Simulations (GLENS) for the lowermost-stratospheric mixing layer between tropospheric and stratospheric air are considered together with 10-day box-model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In GLENS two future scenarios are simulated: the RCP8.5 global warming scenario and a geoengineering scenario, where sulfur is additionally injected into the stratosphere to keep the global mean surface temperature from changing. In the GLENS simulations, the mixing layer will warm and moisten in both future scenarios with a larger effect in the geoengineering scenario. The likelihood of chlorine activation occurring in the mixing layer is highest in the years 2040–2050 if geoengineering is applied, accounting for 3.3 %. In comparison, the likelihood of conditions today is 1.0 %. At the end of the 21st century, the likelihood of this ozone destruction process occurring decreases. We found that 0.1 % of the ozone mixing ratios in the mixing layer above central North America is destroyed for conditions today. A maximum ozone destruction of 0.3 % in the mixing layer occurs in the years 2040–2050 if geoengineering is applied. Comparing the southernmost latitude band (30–35∘ N) and the northernmost latitude band (44–49∘ N) of the considered region, we found a higher likelihood of the occurrence of heterogeneous chlorine activation in the southernmost latitude band, causing a higher impact on ozone as well. However, the ozone loss process is found to have a minor impact on the midlatitude ozone column.


2018 ◽  
Author(s):  
Sabine Robrecht ◽  
Bärbel Vogel ◽  
Jens-Uwe Grooß ◽  
Karen Rosenlof ◽  
Troy Thornberry ◽  
...  

Abstract. Water vapour convectively injected into the mid-latitude lowermost stratosphere could affect stratospheric ozone. The associated potential ozone loss process requires low temperatures and an elevated water vapour mixing ratio. An increase in sulphate aerosol surface area due to a volcanic eruption or geoengineering could increase the likelihood of occurrence of this process. However, the chemical mechanism of this ozone loss process has not yet been analysed in sufficient detail and its sensitivity to various conditions is not yet clear. Under conditions of climate change associated with an increase in greenhouse gases, both a stratospheric cooling and an increase in water vapour convectively injected into the stratosphere is expected. Understanding the influence of low temperatures, elevated water vapour and enhanced sulphate particles on this ozone loss mechanism is a key step in estimating the impact of climate change and potential sulphate geoengineering on mid-latitude ozone. Here, we analyse the ozone loss mechanism and its sensitivity to various stratospheric conditions in detail. Conducting a box-model study with the Chemical Lagrangian Model of the Stratosphere (CLaMS), chemistry was simulated along a 7-day backward trajectory. This trajectory was calculated neglecting mixing of neighbouring air masses. Chemical simulations were initialized using measurements taken during the Study of Emissions and atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign (2013, Texas), which encountered an elevated water vapour mixing ratio at a pressure level around 100 hPa. We present a detailed analysis of the ozone loss mechanism, including the chlorine activation, chlorine catalysed ozone loss cycles, maintenance of activated chlorine and the role of active nitrogen oxide radicals (NOx). Focussing on a realistic trajectory in a temperature range from 197–203 K, a threshold in water vapour of 11.0–11.6 ppmv has to be exceeded and maintained for stratospheric ozone loss to occur. We investigated the sensitivity of the water vapour threshold to temperature, sulphate content, inorganic chlorine (Cly), inorganic nitrogen (NOy) and inorganic bromine (Bry). The water vapour threshold is mainly determined by the temperature and sulphate content. However, the amount of ozone loss depends on Cly, NOy, Bry and the duration of the time period over which chlorine activation can be maintained. Our results show that to deplete ozone, a chlorine activation time of 24 to 36 hours for conditions of the water vapour threshold with low temperatures and high water vapour mixing ratios must be maintained. A maximum ozone loss of 9 % was found for a 20 ppmv water vapour mixing ratio at North American Monsoon (NAM) tropopause standard conditions with the model run along a realistic trajectory. For the same trajectory, using observed conditions (of 10.6 ppmv), whether ozone loss occurs was simulated dependent on the sulphate amount assumed. Detailed analysis of current and future possibilities is needed to assess whether enhanced water vapour conditions in the summertime mid-latitude lower stratosphere leads to significant ozone loss.


2019 ◽  
Vol 19 (9) ◽  
pp. 5805-5833 ◽  
Author(s):  
Sabine Robrecht ◽  
Bärbel Vogel ◽  
Jens-Uwe Grooß ◽  
Karen Rosenlof ◽  
Troy Thornberry ◽  
...  

Abstract. Water vapour convectively injected into the mid-latitude lowermost stratosphere could affect stratospheric ozone. The associated potential ozone loss process requires low temperatures together with elevated water vapour mixing ratios. Since this ozone loss is initiated by heterogeneous chlorine activation on liquid aerosols, an increase in sulfate aerosol surface area due to a volcanic eruption or geoengineering could increase the likelihood of its occurrence. However, the chemical mechanism of this ozone loss process has not yet been analysed in sufficient detail and its sensitivity to various conditions is not yet clear. Under conditions of climate change associated with an increase in greenhouse gases, both a stratospheric cooling and an increase in water vapour convectively injected into the stratosphere are expected. Understanding the influence of low temperatures, elevated water vapour and enhanced sulfate particles on this ozone loss mechanism is a key step in estimating the impact of climate change and potential sulfate geoengineering on mid-latitude ozone. Here, we analyse the ozone loss mechanism and its sensitivity to various stratospheric conditions in detail. By conducting a box-model study with the Chemical Lagrangian Model of the Stratosphere (CLaMS), chemistry was simulated along a 7 d backward trajectory. This trajectory was calculated neglecting mixing of neighbouring air masses. Chemical simulations were initialized using measurements taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign (2013, Texas), which encountered an elevated water vapour mixing ratio of 10.6 ppmv at a pressure level around 100 hPa. We present a detailed analysis of the ozone loss mechanism, including the chlorine activation, chlorine-catalysed ozone loss cycles, maintenance of activated chlorine and the role of active nitrogen oxide radicals (NOx). Focussing on a realistic trajectory in a temperature range from 197 to 202 K, a threshold in water vapour of 10.6 ppmv has to be exceeded and maintained for stratospheric ozone loss to occur. We investigated the sensitivity of the water vapour threshold to temperature, sulfate content, inorganic chlorine (Cly), inorganic nitrogen (NOy) and inorganic bromine (Bry). The water vapour threshold is mainly determined by the temperature and sulfate content. However, the amount of ozone loss depends on Cly, Bry and the duration of the time period over which chlorine activation can be maintained. NOy affects both the potential of ozone formation and the balance between reactions yielding chlorine activation and deactivation, which determines the water vapour threshold. Our results show that in order to deplete ozone, a chlorine activation time of 24 to 36 h for conditions of the water vapour threshold with low temperatures must be maintained. A maximum ozone loss of 9 % was found for a 20 ppmv water vapour mixing ratio using North American Monsoon (NAM) tropopause standard conditions with a chemical box-model simulation along a realistic trajectory. For the same trajectory, using observed conditions (of 10.6 ppmv H2O), the occurrence of simulated ozone loss was dependent on the sulfate amount assumed. Detailed analysis of current and future possibilities is needed to assess whether enhanced water vapour conditions in the summertime mid-latitude lower stratosphere lead to significant ozone loss.


2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


Sign in / Sign up

Export Citation Format

Share Document