scholarly journals Molecular Insights into New Particle Formation in Barcelona, Spain

2020 ◽  
Author(s):  
James Brean ◽  
David C. S. Beddows ◽  
Zongbo Shi ◽  
Brice Temime-Roussel ◽  
Nicolas Marchand ◽  
...  

Abstract. Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative forcing, and have significant effects on human health. New particle formation (NPF) is the process by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes significantly to particle numbers in the atmosphere, accounting for approximately 50 % of cloud condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in NE Spain. The rate of formation of new particles is seen to increase linearly with sulphuric acid concentration in a manner similar to systems studied in chamber studies involving sulphuric acid, water and dimethylamine (DMA), as well as sulphuric acid, water and the oxidation products of pinanediol. The sulphuric acid dimer : monomer ratio is significantly lower than that seen in experiments involving sulphuric acid and DMA in chambers, indicating that stabilization of sulphuric acid clusters by bases is weaker in this dataset than in chambers, and thus another mechanism, likely involving the plentiful highly oxygenated organic molecules (HOMs) is plausible. The high concentrations of HOMs arise largely from both alkylbenzene and monoterpene oxidation, with the former providing greater concentrations of HOMs due to significant local sources. The concentration of these HOMs shows a dependence on both temperature and precursor VOC concentration. New particle formation without growth past 10 nm is also observed, and on these days the highly oxygenated organic compound concentration is significantly lower than on days with growth, and thus high concentrations of low volatility oxygenated organics appear to be a necessary condition for the growth of newly formed particles in Barcelona. These results are consistent with prior observations of new particle formation in both chambers and the real atmosphere, and these results are likely representative of the urban background of many European Mediterranean cities.

2020 ◽  
Vol 20 (16) ◽  
pp. 10029-10045 ◽  
Author(s):  
James Brean ◽  
David C. S. Beddows ◽  
Zongbo Shi ◽  
Brice Temime-Roussel ◽  
Nicolas Marchand ◽  
...  

Abstract. Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative forcing and have significant effects on human health. New particle formation (NPF) is the process by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes significantly to particle numbers in the atmosphere, accounting for approximately 50 % of cloud condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in north-eastern Spain utilising particle counting instruments down to 1.9 nm and a Nitrate Chemical Ionisation Atmospheric Pressure interface Time of Flight Mass Spectrometer (CI-APi-ToF). The rate of formation of new particles is seen to increase linearly with sulfuric acid concentration, although particle formation rates fall short of chamber studies of H2SO4–DMA–H2O while exceeding those of H2SO4–BioOxOrg–H2O nucleation, although a role of highly oxygenated molecules (HOMs) cannot be ruled out. The sulfuric acid dimer : monomer ratio is significantly lower than that seen in experiments involving sulfuric acid and dimethylamine (DMA) in chambers, indicating that stabilisation of sulfuric acid clusters by bases is weaker in this dataset than in chambers, either due to rapid evaporation due to high summertime temperatures or limited pools of stabilising amines. Such a mechanism cannot be verified in these data, as no higher-order H2SO4–amine clusters nor H2SO4–HOM clusters were measured. The high concentrations of HOMs arise from isoprene, alkylbenzene, monoterpene and polycyclic aromatic hydrocarbon (PAH) oxidation, with alkylbenzenes providing greater concentrations of HOMs due to significant local sources. The concentration of these HOMs shows a dependence on temperature. The organic compounds measured primarily fall into the semivolatile organic compound (SVOC) volatility class arising from alkylbenzene and isoprene oxidation. Low-volatility organic compounds (LVOCs) largely arise from oxidation of alkylbenzenes, PAHs and monoterpenes, whereas extremely low-volatility organic compounds (ELVOCs) arise from primarily PAH and monoterpene oxidation. New particle formation without growth past 10 nm is also observed, and on these days oxygenated organic concentrations are lower than on days with growth by a factor of 1.6, and thus high concentrations of low-volatility oxygenated organics which primarily derive from traffic-emitted volatile organic compounds (VOCs) appear to be a necessary condition for the growth of newly formed particles in Barcelona. These results are consistent with prior observations of new particle formation from sulfuric acid–amine reactions in both chambers and the real atmosphere and are likely representative of the urban background of many European Mediterranean cities. A role for HOMs in the nucleation process cannot be confirmed or ruled out, and there is strong circumstantial evidence of the participation of HOMs across multiple volatility classes in particle growth.


2008 ◽  
Vol 8 (3) ◽  
pp. 9673-9695 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
T. Berndt ◽  
F. Stratmann ◽  
S. Mikkonen ◽  
...  

Abstract. Atmospheric new particle formation is generally thought to occur due to homogeneous or ion-induced nucleation of sulphuric acid. We compare ambient nucleation rates with laboratory data from nucleation experiments involving either sulphuric acid or oxidized SO2. Atmospheric nucleation occurs at H2SO4 concentrations 2–4 orders of magnitude lower than binary or ternary H2SO4 nucleation. In contrast, the atmospheric nucleation rates and H2SO4 concentrations are very well replicated in the SO2 oxidation experiments. We explain these features by the formation of free HSO5 radicals in pace with H2SO4 during the SO2 oxidation. We suggest that at temperatures above ~250 K these radicals produce nuclei of new aerosols much more efficiently than H2SO4. These nuclei are activated to further growth by H2SO4 and possibly other trace species. However, at lower temperatures the atmospheric relative acidity is high enough for the H2SO4–H2O nucleation to dominate.


2017 ◽  
Vol 17 (8) ◽  
pp. 4997-5005 ◽  
Author(s):  
Fangqun Yu ◽  
Gan Luo ◽  
Alexey B. Nadykto ◽  
Jason Herb

Abstract. Secondary particles formed via new particle formation (NPF) dominate cloud condensation nuclei (CCN) abundance in most parts of the troposphere and are important for aerosol indirect radiative forcing (IRF). Laboratory measurements have shown that certain organic compounds can significantly enhance the binary nucleation of sulfuric acid and H2O. According to our recent study comparing particle size distributions measured in nine forest areas in North America with those predicted by a global size-resolved aerosol model, current H2SO4–organics nucleation parameterizations appear to significantly overpredict NPF and particle number concentrations in summer. The lack of temperature dependence in the current H2SO4–organics nucleation parameterization has been suggested to be a possible reason for the observed overprediction. In this work, H2SO4–organics clustering thermodynamics from quantum chemical studies has been employed to develop a scheme to incorporate temperature dependence into H2SO4–organics nucleation parameterization. We show that temperature has a strong impact on H2SO4–organics nucleation rates and may reduce the nucleation rate by  ∼  1 order of magnitude per 10 K of temperature increase. The particle number concentrations in summer over North America based on the revised scheme is a factor of more than 2 lower, which is in much better agreement with the observations. With the temperature-dependent H2SO4–organics nucleation parameterization, the summer CCN concentrations in the lower troposphere in the Northern Hemisphere are about 10–30 % lower compared to the temperature-independent parameterization. This study highlights the importance of the temperature effect and its impacts on NPF in the global modeling of aerosol number abundance.


2020 ◽  
Author(s):  
Mario Simon ◽  
Lubna Dada ◽  
Martin Heinritzi ◽  
Wiebke Scholz ◽  
Dominik Stolzenburg ◽  
...  

Abstract. Highly-oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role for new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their new-particle formation rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from +25 to −50 °C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the new-particle formation rates (J1.7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products and a 2-dimensional volatility basis set model (2D-VBS) provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 °C to 0.7 % at −50 °C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to three orders of magnitude at −50 °C compared with 25 °C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic new-particle formation at the molecular level. Our measurements therefore improve our understanding of pure biogenic new-particle formation for a wide range of tropospheric temperatures and precursor concentrations.


2019 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles C.-K. Chou ◽  
Celine S. L. Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matters (PM2.5), the size distribution and number concentration of aerosol particles (NCN) and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan Island during a campaign from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e. activation ratio, activation diameter and kappa) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols, which were suggested be subject to various pollution sources, including aged air pollutants originating in the eastern/northern China and transported on the Asian continental outflows, fresh particles emitted from local sources and distributed by land-sea breeze circulations as well as produced by new particle formation (NPF) processes. Cluster analysis was applied to the backward trajectories of air masses to investigate their respective source regions. The results showed that the aerosols associated with Asian continental outflows were characterized with higher kappa values, whereas higher NCCN and NCN with lower kappa values were found for aerosols in local air masses. The distinct features in hygroscopicity were consistent with the characteristics in the chemical composition of PM2.5. Moreover, this study revealed that the nucleation mode particles from NPF could have participated in the enhancement of CCN activity, most likely by coagulating with sub-CCN particles, although the freshly produced particles were not favored for CCN activation due to their smaller sizes. Thus, the results of this study suggested that the NPF coupling with coagulation processes can significantly increase the NCCN in atmosphere.


2008 ◽  
Vol 8 (23) ◽  
pp. 7255-7264 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
T. Berndt ◽  
F. Stratmann ◽  
S. Mikkonen ◽  
...  

Abstract. Atmospheric new particle formation is generally thought to occur due to homogeneous or ion-induced nucleation of sulphuric acid. We compare ambient nucleation rates with laboratory data from nucleation experiments involving either sulphuric acid or oxidized SO2. Atmospheric nucleation occurs at H2SO4 concentrations 2–4 orders of magnitude lower than binary or ternary nucleation rates of H2SO4 produced from a liquid reservoir, and atmospheric H2SO4 concentrations are very well replicated in the SO2 oxidation experiments. We hypothesize these features to be due to the formation of free HSO5 radicals in pace with H2SO4 during the SO2 oxidation. We suggest that at temperatures above ~250 K these radicals produce nuclei of new aerosols much more efficiently than H2SO4. These nuclei are activated to further growth by H2SO4 and possibly other trace species. However, at lower temperatures the atmospheric relative acidity is high enough for the H2SO4–H2O nucleation to dominate.


2015 ◽  
Vol 15 (24) ◽  
pp. 13993-14003 ◽  
Author(s):  
F. Yu ◽  
G. Luo ◽  
S. C. Pryor ◽  
P. R. Pillai ◽  
S. H. Lee ◽  
...  

Abstract. Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~ 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.


2015 ◽  
Vol 15 (15) ◽  
pp. 21271-21298 ◽  
Author(s):  
F. Yu ◽  
G. Luo ◽  
S. C. Pryor ◽  
P. R. Pillai ◽  
S. H. Lee ◽  
...  

Abstract. Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF) but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics; Nucl-IMN). On average, NPF occurred on ~ 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly over-predicts while the Nucl-IMN scheme slightly under-predicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.


2020 ◽  
Author(s):  
Juan Andrés Casquero-Vera ◽  
Hassan Lyamani ◽  
Lubna Dada ◽  
Simo Hakala ◽  
Pauli Paasonen ◽  
...  

Abstract. A substantial fraction of the atmospheric aerosols originates from secondary new particle formation (NPF), where atmospheric vapours are transformed into particles that subsequently grow to larger sizes, affecting human health and the climate. In this study, we investigate aerosol size distributions at two stations located close to each other (~ 20 km), but at different altitudes: urban (UGR; 680 m a.s.l.) and high-altitude remote (SNS; 2500 m a.s.l.) site, both in the area of Granada, Spain, and part of AGORA observatory (Andalusian Global ObseRvatory of the Atmosphere). The analysis shows a significant contribution of nucleation mode aerosol particles to the total aerosol number concentration at both sites, with a contribution of 47 % and 48 % at SNS and UGR, respectively. Due to the important contribution of NPF events to the total aerosol number concentrations and their high occurrence frequency (> 70 %) during the study period, a detailed analysis of NPF events is done in order to get insight into the possible mechanisms and processes involved in NPF events at these contrastive sites. At SNS, NPF is found to be associated with the transport of gaseous precursors from lower altitudes by orographic buoyant upward flows. However, NPF events at SNS site are always observed from the smallest measured sizes of the aerosol size distribution (4 nm), implying that NPF takes place in or in the vicinity of the high-altitude SNS station rather than transported from lower altitudes. Although NPF events at the mountain site seem to be connected with those occurring at the urban site, growth rates (GR) at SNS are higher than those at UGR site (GR7–25 of 6.9 and 4.5 nm h−1 and GR4–7 of 4.1 and 3.6 nm h−1 at SNS and UGR, respectively). This fact could have a special importance on the production of cloud condensation nuclei (CCN) and therefore on cloud formations which may affect regional/global climate, since larger GR at mountain sites could be translated to larger survival probability of NPF particles to reach CCN sizes, due to shorter time needed for the growth. The analysis of sulfuric acid (H2SO4) shows that the contribution of H2SO4 is able to explain a minimal fraction contribution to the observed GRs at both sites (


Nature ◽  
2016 ◽  
Vol 533 (7604) ◽  
pp. 521-526 ◽  
Author(s):  
Jasper Kirkby ◽  
Jonathan Duplissy ◽  
Kamalika Sengupta ◽  
Carla Frege ◽  
Hamish Gordon ◽  
...  

Abstract Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood1. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours2. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere3,4, and that ions have a relatively minor role5. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded6,7. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Sign in / Sign up

Export Citation Format

Share Document