scholarly journals Supplementary material to "Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations"

Author(s):  
Daniele Visioni ◽  
Douglas G. MacMartin ◽  
Ben Kravitz ◽  
Olivier Boucher ◽  
Andy Jones ◽  
...  
2016 ◽  
Vol 9 (9) ◽  
pp. 3427-3446 ◽  
Author(s):  
Dirk Notz ◽  
Alexandra Jahn ◽  
Marika Holland ◽  
Elizabeth Hunke ◽  
François Massonnet ◽  
...  

Abstract. A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.


2016 ◽  
Author(s):  
Dirk Notz ◽  
Alexandra Jahn ◽  
Marika Holland ◽  
Elizabeth Hunke ◽  
François Massonnet ◽  
...  

Abstract. A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic CMIP6 Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice related variables from climate-model simulations that allow for a better understanding, and ultimately improvement, of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.


2017 ◽  
Vol 10 (2) ◽  
pp. 889-901 ◽  
Author(s):  
Daniel J. Lunt ◽  
Matthew Huber ◽  
Eleni Anagnostou ◽  
Michiel L. J. Baatsen ◽  
Rodrigo Caballero ◽  
...  

Abstract. Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( >  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Gerardo Andres Saenz ◽  
Huei-Ping Huang

The projected changes in the downward solar radiation at the surface over North America for late 21st century are deduced from global climate model simulations with greenhouse-gas (GHG) forcing. A robust trend is found in winter over the United States, which exhibits a simple pattern of a decrease of sunlight over Northern USA. and an increase of sunlight over Southern USA. This structure was identified in both the seasonal mean and the mean climatology at different times of the day. It is broadly consistent with the known poleward shift of storm tracks in winter in climate model simulations with GHG forcing. The centennial trend of the downward shortwave radiation at the surface in Northern USA. is on the order of 10% of the climatological value for the January monthly mean, and slightly over 10% at the time when it is midday in the United States. This indicates a nonnegligible influence of the GHG forcing on solar energy in the long term. Nevertheless, when dividing the 10% by a century, in the near term, the impact of the GHG forcing is relatively minor such that the estimate of solar power potential using present-day climatology will remain useful in the coming decades.


2015 ◽  
Author(s):  
Γεωργία Αλεξανδρή

Βασικός στόχος της παρούσας διδακτορικής διατριβής είναι να αναδείξει τη σημασία της συνδυασμένης χρήσης επίγειων και δορυφορικών παρατηρήσεων με προσομοιώσεις από κλιματικά μοντέλα και μοντέλα διάδοσης ακτινοβολίας στη μελέτη της ηλιακής ακτινοβολίας στην επιφάνεια της Γης. Το πρώτο κεφάλαιο, όπου δίδονται γενικές πληροφορίες για την ηλιακή ακτινοβολία και παρουσιάζονται τα κίνητρα της έρευνας που περιγράφεται στην παρούσα διατριβή, ακολουθείται από ένα κεφάλαιο που περιλαμβάνει τρεις σύντομες μελέτες περίπτωσης. Σε αυτές τις μελέτες γίνεται χρήση δεδομένων από το International Satellite Cloud Climatology Project (ISCCP) με σκοπό την ανάδειξη της σημασίας του προγράμματος ISCCP για κλιματικές μελέτες περιοχικής κλίμακας. Στο τρίτο κεφάλαιο, λαμβάνοντας υπόψη τη συζήτηση που περιλαμβάνεται στην τελευταία έκθεση της Διακυβερνητικής Επιτροπής για την Αλλαγή του Κλίματος (IPCC) για την ηλιακή ακτινοβολία στην επιφάνεια της Γης, παρουσιάζεται μια αναλυτική μελέτη της ικανότητας ενός περιοχικού κλιματικού μοντέλου (RegCM4) να προσομοιώνει τα επίπεδα της προσπίπτουσας στο έδαφος ηλιακής ακτινοβολίας στην Ευρώπη. Αυτή η μελέτη περιλαμβάνει παρατηρήσεις από τους δορυφόρους Meteosat, προσομοιώσεις από περιοχικό κλιματικό μοντέλο και προσομοιώσεις με μοντέλο διάδοσης ακτινοβολίας. Στο κεφάλαιο αυτό υπογραμμίζεται η σημασία της ακριβούς προσομοίωσης της ηλιακής ακτινοβολίας στο έδαφος από τα κλιματικά μοντέλα. Ενώ η Ευρώπη καλύπτεται από ένα σχετικά πυκνό δίκτυο επίγειων σταθμών που καταγράφουν τα επίπεδα της ηλιακής ακτινοβολίας δεν ισχύει το ίδιο για την κλιματικά ευαίσθητη περιοχή της Ανατολικής Μεσογείου. Στο τέταρτο κεφάλαιο αυτής της διατριβής επιχειρείται η κάλυψη αυτού του κενού καθώς παρουσιάζεται μια μελέτη των επιπέδων της προσπίπτουσας ηλιακής ακτινοβολίας στο έδαφος σε υψηλή χωρική ανάλυση για την περίοδο 1983-2013 με τη χρήση δορυφορικών παρατηρήσεων. Η χωροχρονική μεταβολή και οι τάσεις της ηλιακής ακτινοβολίας μελετούνται μαζί με την ευαισθησία των δορυφορικών προϊόντων σε παραμέτρους που σχετίζονται με τα νέφη, τα αιωρούμενα σωματίδια και τους υδρατμούς. Για τις ανάγκες αυτής της μελέτης χρησιμοποιήθηκε μια σειρά από δορυφορικά προϊόντα σε συνδυασμό με επίγειες παρατηρήσεις και πραγματοποιήθηκαν προσομοιώσεις με μοντέλο διάδοσης ακτινοβολίας. Η παρούσα διδακτορική διατριβή ολοκληρώνεται με την παρουσίαση των κυριότερων αποτελεσμάτων στο πέμπτο κεφάλαιο.


2021 ◽  
Author(s):  
Daniele Visioni ◽  
Douglas G. MacMartin ◽  
Ben Kravitz ◽  
Olivier Boucher ◽  
Andy Jones ◽  
...  

Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiment G6sulfur and G6solar for six Earth System Models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming from that resulting from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that, by the end of the century, there is a considerable inter-model spread in the needed injection of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in how the aerosol cloud is distributed latitudinally, and in how stratospheric temperatures are influenced by the produced aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for the SSP5-8.5-SSP2-4.5 difference between 2081 and 2100): the differences in the simulated aerosol spread then change some of the underlying uncertainty, for example in terms of the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the aerosols behavior also result in a larger inter-model spread in the regional response in the surface temperatures in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modelled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system: however, all models agree that, compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures.


2021 ◽  
Author(s):  
Giannis Sofiadis ◽  
Eleni Katragkou ◽  
Edouard L. Davin ◽  
Diana Rechid ◽  
Nathalie de Noblet-Ducoudre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document