scholarly journals Role of Criegee intermediates in the formation of sulfuric acid at a Mediterranean (Cape Corsica) site under influence of biogenic emissions

2021 ◽  
Author(s):  
Alexandre Kukui ◽  
Michel Chartier ◽  
Jinhe Wang ◽  
Hui Chen ◽  
Sébastien Dusanter ◽  
...  

Abstract. Reaction of stabilized Criegee Intermediates (SCIs) with SO2 was proposed as an additional pathway of gaseous sulfuric acid (H2SO4) formation in the atmosphere, supplementary to the conventional mechanism of H2SO4 production by oxidation of SO2 in reaction with OH radicals. However, because of a large uncertainty in mechanism and rate coefficients for the atmospheric formation and loss reactions of different SCIs, the importance of this additional source is not well established. In this work, we present an estimation of the role of SCIs in H2SO4 formation at a western Mediterranean (Cape Corsica) remote site, where a comprehensive field observations including gas phase H2SO4, OH radicals, SO2, volatile organic compounds (VOCs) and aerosol size distribution measurements have been performed in July–August 2013 as a part of the project ChArMEx. The measurement site was under strong influence of local emissions of biogenic volatile organic compounds including monoterpenes and isoprene generating SCIs in reactions with ozone and, hence, presenting an additional source of H2SO4 via SO2 oxidation by the SCIs. Assuming the validity of a steady state between H2SO4 production and its loss by condensation on existing aerosol particles with a unity accommodation coefficient, about 90 % of the H2SO4 formation during the day could be explained by the reaction of SO2 with OH. During the night the oxidation of SO2 by OH radicals was found to contribute only about 10 % to the H2SO4 formation. The accuracy of the derived values for the contribution of OH+SO2 reaction to the H2SO4 formation is limited mostly by a large, presently of a factor of 2, uncertainty in OH+SO2 reaction rate coefficient. The contribution of the SO2 oxidation by SCIs to the H2SO4 formation was evaluated using available measurements of unsaturated VOCs and steady state SCIs concentrations estimated by adopting rate coefficients for SCIs reactions based on structure–activity relationships (SARs). The estimated concentration of the sum of SCIs was in the range of (1–3) × 103 molecule cm−3. During the day the reaction of SCIs with SO2 was found to account for about 10 % and during the night for about 40 % of the H2SO4 production, closing the H2SO4 budget during the day but leaving unexplained about 50 % of the H2SO4 formation during the night. Despite large uncertainties in used kinetic parameters, these results indicate that the SO2 oxidation by SCIs may represent an important H2SO4 source in VOCs-rich environments, especially during night-time.

2021 ◽  
Vol 21 (17) ◽  
pp. 13333-13351
Author(s):  
Alexandre Kukui ◽  
Michel Chartier ◽  
Jinhe Wang ◽  
Hui Chen ◽  
Sébastien Dusanter ◽  
...  

Abstract. Reaction of stabilized Criegee intermediates (SCIs) with SO2 was proposed as an additional pathway of gaseous sulfuric acid (H2SO4) formation in the atmosphere, supplementary to the conventional mechanism of H2SO4 production by oxidation of SO2 in reaction with OH radicals. However, because of a large uncertainty in mechanism and rate coefficients for the atmospheric formation and loss reactions of different SCIs, the importance of this additional source is not well established. In this work, we present an estimation of the role of SCIs in H2SO4 formation at a western Mediterranean (Cape Corsica) remote site, where comprehensive field observations including gas-phase H2SO4, OH radicals, SO2, volatile organic compounds (VOCs) and aerosol size distribution measurements were performed in July–August 2013 as a part of the project ChArMEx (Chemistry-Aerosols Mediterranean Experiment). The measurement site was under strong influence of local emissions of biogenic volatile organic compounds, including monoterpenes and isoprene generating SCIs in reactions with ozone, and, hence, presenting an additional source of H2SO4 via SO2 oxidation by the SCIs. Assuming the validity of a steady state between H2SO4 production and its loss by condensation on existing aerosol particles with a unity accommodation coefficient, about 90 % of the H2SO4 formation during the day could be explained by the reaction of SO2 with OH. During the night the oxidation of SO2 by OH radicals was found to contribute only about 10 % to the H2SO4 formation. The accuracy of the derived values for the contribution of OH + SO2 reaction to the H2SO4 formation is limited mostly by a large, at present factor of 2, uncertainty in the OH + SO2 reaction rate coefficient. The contribution of the SO2 oxidation by SCIs to the H2SO4 formation was evaluated using available measurements of unsaturated VOCs and steady-state SCI concentrations estimated by adopting rate coefficients for SCI reactions based on structure–activity relationships (SARs). The estimated concentration of the sum of SCIs was in the range of (1–3) × 103 molec. cm−3. During the day the reaction of SCIs with SO2 was found to account for about 10 % and during the night for about 40 % of the H2SO4 production, closing the H2SO4 budget during the day but leaving unexplained about 50 % of the H2SO4 formation during the night. Despite large uncertainties in used kinetic parameters, these results indicate that the SO2 oxidation by SCIs may represent an important H2SO4 source in VOC-rich environments, especially during nighttime.


2021 ◽  
Vol 21 (7) ◽  
pp. 5499-5511
Author(s):  
Yishuo Guo ◽  
Chao Yan ◽  
Chang Li ◽  
Wei Ma ◽  
Zemin Feng ◽  
...  

Abstract. Gaseous sulfuric acid (SA) has received a lot of attention for its crucial role in atmospheric new particle formation (NPF). And for this reason, studies until now have mainly focused on daytime SA when most NPF events occur. While daytime SA production is driven by SO2 oxidation of OH radicals of photochemical origin, the formation of SA during nighttime and its potential influence on particle formation remains poorly understood. Here we present evidence for significant nighttime SA production in urban Beijing during winter, yielding concentrations between 1.0 and 3.0 × 106 cm−3. We found a high frequency (∼ 30 %) of nighttime SA events, which are defined by the appearance of a distinct SA peak observed between 20:00 and 04:00 local time, with the maximum concentration exceeding 1.0 × 106 cm−3. These events mostly occurred during unpolluted nights with a low vapor condensation sink. Furthermore, we found that under very clean conditions (visibility > 16.0 km) with abundant ozone (concentration > 2.0 × 1011 cm−3, ∼ 7 ppb), the overall sink of SA was strongly correlated with the products of O3, alkenes and SO2 concentrations, suggesting that the ozonolysis of alkenes played a major role in nighttime SA formation under such conditions. This is in light of previous studies showing that the ozonolysis of alkenes can form OH radicals and stabilized Criegee intermediates (SCIs), both of which are able to oxidize SO2 and thus lead to SA formation. However, we also need to point out that there exist additional sources of SA under more polluted conditions, which are not investigated in this study. Moreover, there was a strong correlation between SA concentration and the number concentration of sub-3 nm particles on both clean and polluted nights. Different from forest environments, where oxidized biogenic vapors are the main driver of nighttime clustering, our study demonstrates that the formation of nighttime cluster mode particles in urban environments is mainly driven by nighttime SA production.


Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


2018 ◽  
Vol 18 (20) ◽  
pp. 15105-15123 ◽  
Author(s):  
Yiwei Gong ◽  
Zhongming Chen ◽  
Huan Li

Abstract. Volatile organic compounds play an important role in air quality and climate change, largely because they contribute to the formation of oxidizing compounds and secondary organic aerosol (SOA). In this study, a series of products, including peroxides and carbonyl compounds in both gaseous and particulate phases, were simultaneously detected to investigate the oxidation regime and SOA composition in limonene ozonolysis. The roles of different double bonds (DBs), radicals, and water were also examined. In our first investigation, we focused on representative oxidizing compounds produced in limonene ozonolysis, including stabilized Criegee intermediates (SCIs), OH radicals, and peroxides. The dependence of H2O2 and hydroxymethyl hydroperoxide (HMHP) formation on RH demonstrates that the reaction with water is an important reaction pathway for limonene SCIs, and the lower limit SCI yields of endocyclic and exocyclic DBs were estimated to be ∼0.24 and ∼0.43, respectively. The OH yield was determined by adding sufficient amounts of an OH scavenger, and the OH yields of endocyclic and exocyclic DBs were ∼0.65 and ∼0.24, respectively. These results indicate that in limonene ozonolysis the endocyclic DB is inclined to generate OH radicals through the hydroperoxide channel, while the exocyclic DB has a higher fraction of forming SCIs. Additionally, other gas-phase and particle-phase peroxides were also studied in this work. The formation of performic acid (PFA) and peracetic acid (PAA) was promoted significantly by increasing RH and the degree of oxidation, and the discrepancy between the experimental and model results suggested some missing formation pathways. Considerable generation of H2O2 from SOA in the aqueous phase was observed, especially at a high [O3] ∕ [limonene] ratio, which was mainly attributed to the hydration and decomposition of unstable peroxides in SOA such as peroxycarboxylic acids and peroxyhemiacetals. Different DBs and OH scavengers had a large impact on the particulate peroxides, and their stability indicated that the types of peroxides in SOA changed under different conditions. As for the contribution of peroxides to SOA, the results demonstrated that the mass fraction of particulate peroxides in limonene SOA was less than 0.2 at a low [O3] ∕ [limonene] ratio, while the mass fraction was 0.4–0.6 at a high [O3] ∕ [limonene] ratio. The partitioning behavior of peroxides showed that multi-generation oxidation helped produce more low-volatility peroxides, which partially explained the higher SOA yield. The partitioning behavior of carbonyls was also examined and the experimental partitioning coefficients (Kp) were found to be typically several orders of magnitude higher than the theoretical values. This study provided new insights into the oxidation regime and SOA composition in limonene ozonolysis, and limonene showed its specificity in many aspects when both endocyclic and exocyclic DBs were ozonated. We suggest that the atmospheric implications of terpenes containing more than one DB and the SOA composition, especially particulate peroxides, need further study.


2017 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
AdeoyeOyetunji Oyewopo ◽  
JosephBabatunde Dare ◽  
OlugbemiTope Olaniyan ◽  
AkunnaGodson Gabriel

2020 ◽  
Author(s):  
Yishuo Guo ◽  
Chao Yan ◽  
Chang Li ◽  
Zemin Feng ◽  
Ying Zhou ◽  
...  

Abstract. Gaseous sulfuric acid (SA) has received a lot of attention for its crucial role in atmospheric new particle formation (NPF), and for this reason, studies until now have mainly focused on daytime SA when most NPF events occur. While daytime SA production is driven by SO2 oxidation of OH radicals from photochemical origin, the formation of SA during night and its potential influence on particle formation remains poorly understood. Here we present evidence for significant nighttime SA production in urban Beijing during winter, yielding concentrations between 1.0 and 3.0 × 106 cm−3. We found a high frequency (~ 30 %) of nighttime SA events, which are defined by the appearance of a distinct SA peak observed between 20:00 and 04:00 local time, and with the maximum concentration exceeding 1.0 × 106 cm−3. These events mostly occurred during unpolluted nights with low vapor condensation sink. Furthermore, we found that under very clean conditions (visibility > 16.0 km) with abundant ozone (concentration > 2.0 × 1011 cm−3, ~ 7 ppb), the overall sink of SA was strongly correlated with the products of O3, alkenes and SO2 concentrations, suggesting that the ozonolysis of alkenes played a major role in nighttime SA formation under such conditions. This is in light with previous studies showing that the ozonolysis of alkenes can form OH radical and stabilized Criegee intermediate (sCI), both of which are able to oxidize SO2 leading to SA formation. However, we also need to point out that there exist additional sources of SA under more polluted condition, which are not investigated in this study. Moreover, there was a strong correlation between SA concentration and the number concentration of sub-3 nm particles in both clean and polluted nights. Different from forest environments, where oxidized biogenic vapors are the main driver of nighttime clustering, our study demonstrates that the formation of nighttime cluster mode particles in urban environments is mainly driven by nighttime SA production.


Sign in / Sign up

Export Citation Format

Share Document