scholarly journals Evolution of volatility and composition in sesquiterpene-mixed and α-pinene secondary organic aerosol particles during isothermal evaporation

2021 ◽  
Author(s):  
Zijun Li ◽  
Angela Buchholz ◽  
Arttu Ylisirniö ◽  
Luis Barreira ◽  
Liqing Hao ◽  
...  

Abstract. Efforts have been spent on investigating the isothermal evaporation of α-pinene SOA particles at ranges of conditions and decoupling the impacts of viscosity and volatility on evaporation. However, little is known about the evaporation behavior of SOA particles from biogenic organic compounds other than α-pinene. In this study, we investigated the isothermal evaporation behaviors of α-pinene (αpin) and sesquiterpene mixture (SQTmix) SOA particles under a series of relative humidity (RH) conditions. With a set of in-situ instruments, we monitored the evolution of particle size, volatility, and composition during evaporation. Our finding demonstrates that the SQTmix SOA particles evaporated slower than the αpin ones at any set of RH (expressed with the volume fraction remaining (VFR)), which is primarily due to their lower volatility and possibly aided by higher viscosity under dry conditions. We further applied positive matrix factorization (PMF) to thermal desorption data containing volatility and composition information. Analyzing the net change ratios (NCRs) of each PMF-resolved factor, we can quantitatively compare how each sample factor evolves with increasing evaporation time/RH. When sufficient particulate water content was present in either SOA system, the most volatile sample factor was primarily lost via evaporation and changes in other sample factors were mainly governed by aqueous-phase processes. The evolution of each sample factor of SQTmix SOA particles was controlled by a single type of process, whereas for αpin SOA particles it was regulated by multiple processes. As indicated by the coevolution of VFR and NCR, the effect of aqueous-phase processes could vary from one to another according to particle type, sample factors and evaporation timescale.

2021 ◽  
Vol 21 (24) ◽  
pp. 18283-18302
Author(s):  
Zijun Li ◽  
Angela Buchholz ◽  
Arttu Ylisirniö ◽  
Luis Barreira ◽  
Liqing Hao ◽  
...  

Abstract. Efforts have been spent on investigating the isothermal evaporation of α-pinene secondary organic aerosol (SOA) particles at ranges of conditions and decoupling the impacts of viscosity and volatility on evaporation. However, little is known about the evaporation behavior of SOA particles from biogenic organic compounds other than α-pinene. In this study, we investigated the isothermal evaporation behavior of the α-pinene and sesquiterpene mixture (SQTmix) SOA particles under a series of relative humidity (RH) conditions. With a set of in situ instruments, we monitored the evolution of particle size, volatility, and composition during evaporation. Our finding demonstrates that the SQTmix SOA particles evaporated slower than the α-pinene ones at any set of RH (expressed with the volume fraction remaining, VFR), which is primarily due to their lower volatility and possibly aided by higher viscosity under dry conditions. We further applied positive matrix factorization (PMF) to the thermal desorption data containing volatility and composition information. Analyzing the net change ratios (NCRs) of each PMF-resolved factor, we can quantitatively compare how each sample factor evolves with increasing evaporation time or RH. When sufficient particulate water content was present in either SOA system, the most volatile sample factor was primarily lost via evaporation, and changes in the other sample factors were mainly governed by aqueous-phase processes. The evolution of each sample factor of the SQTmix SOA particles was controlled by a single type of process, whereas for the α-pinene SOA particles it was regulated by multiple processes. As indicated by the coevolution of VFR and NCR, the effect of aqueous-phase processes could vary from one to another according to particle type, sample factors, and evaporation timescale.


2016 ◽  
Vol 16 (3) ◽  
pp. 1747-1760 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
C. Giorio ◽  
F. Siekmann ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene ∕ NOx ∕ light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.


2015 ◽  
Vol 15 (14) ◽  
pp. 20561-20596 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
C. Giorio ◽  
F. Siekmann ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene/NOx/light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are two and four times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of two or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to water soluble volatile organic compounds (VOCs) dissolution in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.


2020 ◽  
Vol 20 (13) ◽  
pp. 7693-7716 ◽  
Author(s):  
Angela Buchholz ◽  
Arttu Ylisirniö ◽  
Wei Huang ◽  
Claudia Mohr ◽  
Manjula Canagaratna ◽  
...  

Abstract. The measurements of aerosol particles with a filter inlet for gases and aerosols (FIGAERO) together with a chemical ionisation mass spectrometer (CIMS) yield the overall chemical composition of the particle phase. In addition, the thermal desorption profiles obtained for each detected ion composition contain information about the volatility of the detected compounds, which is an important property for understanding many physical properties like gas–particle partitioning. We coupled this thermal desorption method with isothermal evaporation prior to the sample collection to investigate the chemical composition changes during isothermal particle evaporation and particulate-water-driven chemical reactions in α-pinene secondary organic aerosol (SOA) of three different oxidative states. The thermal desorption profiles of all detected elemental compositions were then analysed with positive matrix factorisation (PMF) to identify the drivers of the chemical composition changes observed during isothermal evaporation. The keys to this analysis were to use the error matrix as a tool to weight the parts of the data carrying most information (i.e. the peak area of each thermogram) and to run PMF on a combined data set of multiple thermograms from different experiments to enable a direct comparison of the individual factors between separate measurements. The PMF was able to identify instrument background factors and separate them from the part of the data containing particle desorption information. Additionally, PMF allowed us to separate the direct desorption of compounds detected at a specific elemental composition from other signals with the same composition that stem from the thermal decomposition of thermally instable compounds with lower volatility. For each SOA type, 7–9 factors were needed to explain the observed thermogram behaviour. The contribution of the factors depended on the prior isothermal evaporation. Decreased contributions from the factors with the lowest desorption temperatures were observed with increasing isothermal evaporation time. Thus, the factors identified by PMF could be interpreted as volatility classes. The composition changes in the particles due to isothermal evaporation could be attributed to the removal of volatile factors with very little change in the desorption profiles of the individual factors (i.e. in the respective temperatures of peak desorption, Tmax). When aqueous-phase reactions took place, PMF was able to identify a new factor that directly identified the ions affected by the chemical processes. We conducted a PMF analysis of the FIGAERO–CIMS thermal desorption data for the first time using laboratory-generated SOA particles. But this method can be applied to, for example, ambient FIGAERO–CIMS measurements as well. There, the PMF analysis of the thermal desorption data identifies organic aerosol (OA) sources (such as biomass burning or oxidation of different precursors) and types, e.g. hydrocarbon-like (HOA) or oxygenated organic aerosol (OOA). This information could also be obtained with the traditional approach, namely the PMF analysis of the mass spectra data integrated for each thermogram. But only our method can also obtain the volatility information for each OA source and type. Additionally, we can identify the contribution of thermal decomposition to the overall signal.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dvir Gur ◽  
Emily J. Bain ◽  
Kory R. Johnson ◽  
Andy J. Aman ◽  
H. Amalia Pasoili ◽  
...  

AbstractSkin color patterns are ubiquitous in nature, impact social behavior, predator avoidance, and protection from ultraviolet irradiation. A leading model system for vertebrate skin patterning is the zebrafish; its alternating blue stripes and yellow interstripes depend on light-reflecting cells called iridophores. It was suggested that the zebrafish’s color pattern arises from a single type of iridophore migrating differentially to stripes and interstripes. However, here we find that iridophores do not migrate between stripes and interstripes but instead differentiate and proliferate in-place, based on their micro-environment. RNA-sequencing analysis further reveals that stripe and interstripe iridophores have different transcriptomic states, while cryogenic-scanning-electron-microscopy and micro-X-ray diffraction identify different crystal-arrays architectures, indicating that stripe and interstripe iridophores are different cell types. Based on these results, we present an alternative model of skin patterning in zebrafish in which distinct iridophore crystallotypes containing specialized, physiologically responsive, organelles arise in stripe and interstripe by in-situ differentiation.


Nanoscale ◽  
2021 ◽  
Author(s):  
Lixiang Xing ◽  
Cui Wang ◽  
Yi Cao ◽  
Jihui Zhang ◽  
Haibing Xia

In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of...


2017 ◽  
Vol 4 (6) ◽  
pp. 205-210 ◽  
Author(s):  
Ran Zhao ◽  
Dana Aljawhary ◽  
Alex K. Y. Lee ◽  
Jonathan P. D. Abbatt

2019 ◽  
Vol 19 (11) ◽  
pp. 7279-7295 ◽  
Author(s):  
Athanasia Vlachou ◽  
Anna Tobler ◽  
Houssni Lamkaddam ◽  
Francesco Canonaco ◽  
Kaspar R. Daellenbach ◽  
...  

Abstract. Bootstrap analysis is commonly used to capture the uncertainties of a bilinear receptor model such as the positive matrix factorization (PMF) model. This approach can estimate the factor-related uncertainties and partially assess the rotational ambiguity of the model. The selection of the environmentally plausible solutions, though, can be challenging, and a systematic approach to identify and sort the factors is needed. For this, comparison of the factors between each bootstrap run and the initial PMF output, as well as with externally determined markers, is crucial. As a result, certain solutions that exhibit suboptimal factor separation should be discarded. The retained solutions would then be used to test the robustness of the PMF output. Meanwhile, analysis of filter samples with the Aerodyne aerosol mass spectrometer and the application of PMF and bootstrap analysis on the bulk water-soluble organic aerosol mass spectra have provided insight into the source identification and their uncertainties. Here, we investigated a full yearly cycle of the sources of organic aerosol (OA) at three sites in Estonia: Tallinn (urban), Tartu (suburban) and Kohtla-Järve (KJ; industrial). We identified six OA sources and an inorganic dust factor. The primary OA types included biomass burning, dominant in winter in Tartu and accounting for 73 % ± 21 % of the total OA, primary biological OA which was abundant in Tartu and Tallinn in spring (21 % ± 8 % and 11 % ± 5 %, respectively), and two other primary OA types lower in mass. A sulfur-containing OA was related to road dust and tire abrasion which exhibited a rather stable yearly cycle, and an oil OA was connected to the oil shale industries in KJ prevailing at this site that comprises 36 % ± 14 % of the total OA in spring. The secondary OA sources were separated based on their seasonal behavior: a winter oxygenated OA dominated in winter (36 % ± 14 % for KJ, 25 % ± 9 % for Tallinn and 13 % ± 5 % for Tartu) and was correlated with benzoic and phthalic acid, implying an anthropogenic origin. A summer oxygenated OA was the main source of OA in summer at all sites (26 % ± 5 % in KJ, 41 % ± 7 % in Tallinn and 35 % ± 7 % in Tartu) and exhibited high correlations with oxidation products of a-pinene-like pinic acid and 3-methyl-1, 2, 3-butanetricarboxylic acid (MBTCA), suggesting a biogenic origin.


2014 ◽  
Vol 14 (19) ◽  
pp. 10761-10772 ◽  
Author(s):  
S. S. Steimer ◽  
M. Lampimäki ◽  
E. Coz ◽  
G. Grzinic ◽  
M. Ammann

Abstract. Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a scanning transmission X-ray microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain near-edge X-ray absorption fine structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid–water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the timescale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.


Sign in / Sign up

Export Citation Format

Share Document