scholarly journals Impact of Eastern and Central Pacific El Niño on Lower Tropospheric Ozone in China

2022 ◽  
Author(s):  
Zhongjing Jiang ◽  
Jing Li

Abstract. Tropospheric ozone is an essential atmospheric component as it plays a significant role in influencing radiation equilibrium and ecological health. It is affected not only by anthropogenic activities but also by natural climate variabilities. Here we examine the tropospheric ozone change in China associated with the Eastern Pacific (EP) and Central Pacific (CP) El Niño using satellite observations from 2007 to 2017 and GEOS-Chem simulations from 1980 to 2017. GEOS-Chem simulations reasonably reproduce the satellite-retrieved lower tropospheric ozone (LTO) changes despite a slight underestimation. Results show that El Niño generally exerts negative impacts on LTO concentration in China, except for southeastern China during the pre-CP El Niño autumn and post-EP El Niño summer. The budget analysis further indicates that for both events, LTO changes are dominated by the transport process controlled by circulation patterns and the chemical process influenced by local meteorological anomalies associated with El Niño, especially the solar radiation and relative humidity changes. The differences between EP and CP-induced LTO changes mostly lie in southern China. The different strengths, positions, and duration of western North Pacific anomalous anticyclone (WNPAC) induced by tropical warming are likely responsible for the different EP and CP LTO changes. During the post-EP El Niño summer, the Indian ocean capacitor also plays an important role in controlling LTO changes over southern China.

2013 ◽  
Vol 26 (2) ◽  
pp. 361-379 ◽  
Author(s):  
Pei-Hsuan Chung ◽  
Tim Li

Abstract The interdecadal change of the mean state and two types of El Niño was investigated based on the analysis of observational data from 1980 to 2010. It was found that easterly trades and sea surface temperature (SST) gradients across the equatorial Pacific undergo a regime change in 1998/99, with enhanced trades and a significant cooling (warming) over tropical eastern (western) Pacific in the later period. Accompanying this mean state change is more frequent occurrence of central Pacific (CP) El Niño during 1999–2010. The diagnosis of air–sea feedback strength showed that atmospheric precipitation and wind responses to CP El Niño are greater than those to the eastern Pacific (EP) El Niño for given a unit SST anomaly (SSTA) forcing. The oceanic response to the same wind forcing, however, is greater in the EP El Niño than in the CP El Niño. A mixed layer heat budget analysis reveals that zonal advection (thermocline change induced vertical advection) primarily contributes to the CP (EP) El Niño growth. The role of the mean SST zonal gradient in El Niño selection was investigated through idealized numerical experiments. With the increase of the background zonal SST gradient, the anomalous wind and convection response to a specified EP or CP SSTA shift to the west. Such a difference results in a bifurcation of maximum SSTA tendency, as shown from a simple ocean model. The numerical results support the notion that a shift to the La Niño–like interdecadal mean state is responsible for more frequent occurrence of CP-type El Niño.


2016 ◽  
Vol 29 (5) ◽  
pp. 1919-1934 ◽  
Author(s):  
Xiong Chen ◽  
Jian Ling ◽  
Chongyin Li

Abstract Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.


2012 ◽  
Vol 140 (11) ◽  
pp. 3669-3681 ◽  
Author(s):  
Daria Gushchina ◽  
Boris Dewitte

ABSTRACT The characteristics of intraseasonal tropical variability (ITV) associated with the two flavors of El Niño [i.e., the canonical or eastern Pacific (EP) El Niño and the Modoki or central Pacific (CP) El Niño] are documented using composite and regression analysis. Double space–time Fourier analysis is applied to the NCEP–NCAR zonal wind at 850 hPa (U850) to separate the different components of the ITV in the tropical troposphere, which is then used to define indices of wave activity, and document the spatial pattern of the waves. It is shown that the ITV characteristics are altered during CP El Niño compared to the typical seasonal dependence of the ITV–ENSO relationship. In particular, while EP El Niño is characterized by enhanced MJO and equatorial Rossby (ER) wave activity during spring–summer prior to the ENSO peak, during CP El Niño, the ITV activity is increased during the mature and decaying phases. It is suggested that ITV is more propitious to the triggering of the EP event; while during the CP event, it contributes mostly to the persistence of positive SST anomalies. The oceanic response of these ITV anomalous patterns is further investigated in the Simple Ocean Data Assimilation (SODA) reanalysis by documenting the seasonal evolution of the intraseasonal equatorial oceanic Kelvin wave (IEKW) activity during the two flavors of El Niño. It is shown that anomalous westerlies associated with ITV may generate the corresponding response in the ocean in the form of anomalous IEKW activity.


2019 ◽  
Vol 4 (1) ◽  
pp. 15
Author(s):  
Budi Prasetyo ◽  
Nikita Pusparini ◽  
Ivonne Milichristi Radjawanne

<strong>Vertical Profile of Banda Sea Temperature Related to El Niño Events in the East Pacific and Central Pacific</strong>.Eastern Pacific (EP) and Central Pacific El Niño have different characteristics such as mechanism, evolution, impact to Sea Surface Temperature (SST), and rainfall. The character of two types of El Nino affect the temperature of the sea, on the near-surface as well as in deeper layer, in other regions including Banda Sea. This study is aimed to understand the response of Banda Sea vertical sea temperature profile to both El Niño types using sea temperature data from Simple Ocean Data Assimilation (SODA) v.2.2.4 from January 1950 until December 2010 (60 years), Oceanic Nino Index (ONI), and mixed layer depth (MLD) from SODA3. Eastern Pacific El Niño and CP El Niño cooled Banda Sea about -1.5°C and 0.9°C, respectively. The maximum cooling due to both El Niño occurred in the thermocline layer (at the depth of 90 to 120m). The maximum temperature decrease during EP El Niño occurred at the depth of 90 to 120 m, while during CP El Niño the maximum temperature decrease was at 140 to 160 m and 160 to 200m in western and eastern Banda Sea, respectively. The temperature of the near-surface layer responded rapidly to CP El Niño while in the deep layer the temperature responded more to EP El Niño. The Banda deep sea layer was cooling after both types of El Niño extinct while the temperature of near-surface layer was increasing when CP El Niño extinct.


2021 ◽  
Vol 9 (10) ◽  
pp. 1041
Author(s):  
Yusuf Jati Wijaya ◽  
Ulung Jantama Wisha ◽  
Yukiharu Hisaki

Using forty years (1978–2017) of Ocean Reanalysis System 4 (ORAS4) dataset, the purpose of this study is to investigate the fluctuation of the North Equatorial Countercurrent (NECC) to the east of the dateline in relation to the presence of three kinds of El Niño events. From spring (MAM) through summer (JJA), we found that the NECC was stronger during the Eastern Pacific El Niño (EP El Niño) and the MIX El Niño than during the Central Pacific El Niño (CP El Niño). When it comes to winter (DJF), on the other hand, the NECC was stronger during the CP and MIX El Niño and weaker during the EP El Niño. This NECC variability was affected by the fluctuations of thermocline depth near the equatorial Pacific. Moreover, we also found that the seasonal southward shift of the NECC occurred between winter and spring, but the shift was absent during the CP and MIX El Niño events. This meridional shift was strongly affected by the local wind stress.


2019 ◽  
Vol 32 (22) ◽  
pp. 7823-7836 ◽  
Author(s):  
Feng Jiang ◽  
Wenjun Zhang ◽  
Xin Geng ◽  
Malte F. Stuecker ◽  
Chao Liu

ABSTRACT Here we investigate the response of boreal spring precipitation over southern China (SPSC) to central Pacific (CP) El Niño based on observational datasets. While there is enhanced precipitation over southern China during the decaying boreal spring of eastern Pacific (EP) El Niño events, so far no clear precipitation response has been detected during the same decaying stage for CP El Niño composites. Here we show that around half of the CP El Niño events coincide with enhanced SPSC (wet CP El Niño), while the other half are accompanied by reduced SPSC (dry CP El Niño). These two types of CP El Niño events bear dramatically different evolution features in their respective tropical sea surface temperature anomaly (SSTA) patterns. Wet CP El Niño events are characterized by an SSTA longitudinal position confined to the tropical central-eastern Pacific. In contrast, dry CP El Niño events exhibit a clear westward propagation of SSTAs during their evolution, with maximum SSTAs located to the west of the date line after their mature phase. These different longitudinal positions of positive SSTAs during their decaying phase result in distinct meridional structures of the tropical Pacific convection anomalies as well as the ENSO combination mode (C-mode) response. An anomalous low-level anticyclone is evident over the western North Pacific during wet CP El Niño events during their decaying phase, while an anomalous cyclonic circulation is found for dry CP El Niño events. We emphasize that the impacts of CP El Niño on the SPSC depend crucially on the simultaneous zonal location of warm SSTAs in the tropical Pacific.


2018 ◽  
Vol 31 (17) ◽  
pp. 6947-6966 ◽  
Author(s):  
Kaiqiang Deng ◽  
Song Yang ◽  
Mingfang Ting ◽  
Yaheng Tan ◽  
Shan He

Global monsoon precipitation (GMP) brings the majority of water for the local agriculture and ecosystem. The Northern Hemisphere (NH) GMP shows an upward trend over the past decades, while the trend in the Southern Hemisphere (SH) GMP is weak and insignificant. The first three singular value decomposition modes between NH GMP and global SST during boreal summer reflect, in order, the Atlantic multidecadal oscillation (AMO), eastern Pacific (EP) El Niño, and central Pacific (CP) El Niño, when the AMO dominates the NH climate and contributes to the increased trend. However, the first three modes between SH GMP and global SST during boreal winter are revealed as EP El Niño, the AMO, and CP El Niño, when the EP El Niño becomes the most significant driver of the SH GMP, and the AMO-induced rainfall anomalies may cancel out each other within the SH global monsoon domain and thus result in a weak trend. The intensification of NH GMP is proposed to favor the occurrences of droughts and heat waves (HWs) in the midlatitudes through a monsoon–desert-like mechanism. That is, the diabatic heating associated with the monsoonal rainfall may drive large-scale circulation anomalies and trigger intensified subsidence in remote regions. The anomalous descending motions over the midlatitudes are usually accompanied by clear skies, which result in less precipitation and more downward solar radiation, and thus drier and hotter soil conditions that favor the occurrences of droughts and HWs. In comparison, the SH GMP may exert much smaller impacts on the NH extremes in spring and summer, probably because the winter signals associated with SH GMP cannot sufficiently persist into the following seasons.


2012 ◽  
Vol 25 (22) ◽  
pp. 7867-7883 ◽  
Author(s):  
Yuan Yuan ◽  
Song Yang ◽  
Zuqiang Zhang

Abstract The authors examine different evolution features of the low-level anticyclone over the tropical northwestern Pacific between eastern Pacific (EP) El Niño events and central Pacific (CP) El Niño events. During EP El Niño, the low-level anticyclone shows an eastward movement from the northern Indian Ocean to the east of the Philippines. During CP El Niño, however, the anticyclone is mostly confined to the west of the Philippines. It is weaker, exhibits a shorter lifetime, and lacks eastward movement compared to the Philippine Sea anticyclone (PSAC) during EP El Niño. Investigation into the possible impact of Indian Ocean (IO) sea surface temperature (SST) on the evolution of the low-level anticyclone during EP and CP El Niño indicates that both SST and low-level atmospheric circulation over the IO are related more strongly with EP El Niño than with CP El Niño. The IO SST tends to exert a more prominent influence on PSAC during EP El Niño than during CP El Niño. During the developing summer and autumn of EP El Niño, the anomalous anticyclone over the northern Indian Ocean excited by positive IO dipole may contribute to an early development of the PSAC. During the winter and decaying spring, the anomalous anticyclone to the east of the Philippines instigated by the IO basin-wide warming mode also favors a larger persistence of the PSAC. During CP El Niño, however, IO SST shows a negligible impact on the evolution of the anticyclone.


Sign in / Sign up

Export Citation Format

Share Document