scholarly journals Interannual variability of the ecosystem CO<sub>2</sub> fluxes at paludified spruce forest and ombrotrophic bog in southern taiga

2021 ◽  
Author(s):  
Vadim Mamkin ◽  
Vitaly Avilov ◽  
Dmitry Ivanov ◽  
Andrey Varlagin ◽  
Julia Kurbatova

Abstract. Climate warming in high latitudes impacts CO2 sequestration of northern peatlands through the changes in both production and decomposition processes. The response of the net CO2 fluxes between ecosystems and the atmosphere to the climate change and weather anomalies can vary across the forest and non-forest peatlands. To better understand the differences in CO2 dynamics at forest and non-forest boreal peatlands induced by changes in environmental conditions the estimates of interannual variability of the net ecosystem exchange (NEE), total ecosystem respiration (TER) and gross primary production (GPP) was obtained at two widespread peatland ecosystems – paludified spruce forest and adjacent ombrotrophic bog in the southern taiga of west Russia using 6-year of paired eddy covariance flux measurements. The period of measurements (2015–2020) was characterized by both positive and negative annual and growing season air temperature and precipitation anomalies. Flux measurements showed that in spite of the lower growing season TER (332…339 gC∙m−2) and GPP (442…464 gC∙m−2) rates the bog had a lower NEE (−132…−108) than the forest excepting the warmest and the wettest year of the period and was a sink of atmospheric CO2 in the selected years while the forest was a CO2 sink or source between years depending on the environmental conditions. Growing season NEE at the forest site was between −142 and 28 gC∙m−2, TER between 1135 and 1366 gC∙m−2 and GPP between 1207 and 1462 gC∙m−2. Annual NEE at the forest was between −62 and 145 gC∙m−2, TER between 1429 and 1652 gC∙m−2 and GPP between 1345 and 1566 gC∙m−2 respectively. Anomalously warm winter with sparse and thin snow cover lead to the increased GPP as well as lower NEE in early spring at forest and to the increased spring TER at the bog. Also, the shifting of the compensation point to the earlier dates at the forest and to the later dates at the bog following the warmest winter of the period was detected. This study suggest that the warming in winter can increase CO2 uptake of the paludified spruce forests of southern taiga in non-growing season.

2012 ◽  
Vol 9 (10) ◽  
pp. 13713-13742 ◽  
Author(s):  
B. R. K. Runkle ◽  
T. Sachs ◽  
C. Wille ◽  
E.-M. Pfeiffer ◽  
L. Kutzbach

Abstract. This paper evaluates the relative contribution of light and temperature on net ecosystem CO2 uptake during the 2006 growing season in a~polygonal tundra ecosystem in the Lena River Delta in Northern Siberia (72°22´ N, 126°30´ E). We demonstrate that the timing of warm periods may be an important determinant of the magnitude of the ecosystem's carbon sink function, as they drive temperature-induced changes in respiration. Hot spells during the early portion of the growing season are shown to be more influential in creating mid-day surface-to-atmosphere net ecosystem CO2 exchange fluxes than those occurring later in the season. In this work we also develop and present a bulk flux partition model to better account for tundra plant physiology and the specific light conditions of the arctic region that preclude the successful use of traditional partition methods that derive a respiration-temperature relationship from all night-time data. Night-time, growing season measurements are rare during the arctic summer, however, so the new method allows for temporal variation in the parameters describing both ecosystem respiration and gross uptake by fitting both processes at the same time. Much of the apparent temperature sensitivity of respiration seen in the traditional partition method is revealed in the new method to reflect seasonal changes in basal respiration rates. Understanding and quantifying the flux partition is an essential precursor to describing links between assimilation and respiration at different time scales, as it allows a more confident evaluation of measured net exchange over a broader range of environmental conditions. The growing season CO2 sink estimated by this study is similar to those reported previously for this site, and is substantial enough to withstand the long, low-level respiratory CO2 release during the rest of the year to maintain the site's CO2 sink function on an annual basis.


2014 ◽  
Vol 11 (3) ◽  
pp. 5089-5122 ◽  
Author(s):  
X. Jia ◽  
T. S. Zha ◽  
B. Wu ◽  
Y. Q. Zhang ◽  
J. N. Gong ◽  
...  

Abstract. The carbon (C) cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration potential of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE) over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1) quantify NEE and its components, (2) examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP) of 456 ± 8 g C m−2 yr−1 and an ecosystem respiration (Re) of 379 ± 3 g C m−2 yr−1, resulting in a net C sink of 77 ± 7 g C m−2 yr−1. The maximum daily NEE, GEP and Re were −4.7, 6.8 and 3.3 g C m−2 day−1, respectively. Both the maximum C assimilation rate (i.e., at optimum light intensity) and the quantum yield varied strongly over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water stress exerted a major control over daytime NEE, and interacted with heat stress and photoinhibition in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10). At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1–2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme climatic events.


2014 ◽  
Vol 11 (2) ◽  
pp. 2189-2226 ◽  
Author(s):  
J. Hommeltenberg ◽  
H. P. Schmid ◽  
M. Droesler ◽  
P. Werle

Abstract. This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-alpine region of southern Germany. The sites are separated by only ten kilometers, they share the same formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for two years (July 2010 to June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (−130 ± 31 and −300 ± 66 g C m−2 a−1 in the first and second year respectively) than the natural bog forest at Schechenfilz (−53 ± 28 and −73±38 g C m−2 a−1). The strong net CO2 uptake can be explained by the high gross primary productivity of the spruces that over-compensates the two times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger LAI of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source, if the whole life-cycle, since forest planting is considered. We determined the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. The estimate resulted in a strong carbon release of +156 t C ha−1 within the last 44 yr, means the spruces would need to grow for another 100 yr, at the current rate, to compensate the peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but consistent carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.


2016 ◽  
Vol 13 (14) ◽  
pp. 4219-4235 ◽  
Author(s):  
Min Jung Kwon ◽  
Martin Heimann ◽  
Olaf Kolle ◽  
Kristina A. Luus ◽  
Edward A. G. Schuur ◽  
...  

Abstract. With increasing air temperatures and changing precipitation patterns forecast for the Arctic over the coming decades, the thawing of ice-rich permafrost is expected to increasingly alter hydrological conditions by creating mosaics of wetter and drier areas. The objective of this study is to investigate how 10 years of lowered water table depths of wet floodplain ecosystems would affect CO2 fluxes measured using a closed chamber system, focusing on the role of long-term changes in soil thermal characteristics and vegetation community structure. Drainage diminishes the heat capacity and thermal conductivity of organic soil, leading to warmer soil temperatures in shallow layers during the daytime and colder soil temperatures in deeper layers, resulting in a reduction in thaw depths. These soil temperature changes can intensify growing-season heterotrophic respiration by up to 95 %. With decreased autotrophic respiration due to reduced gross primary production under these dry conditions, the differences in ecosystem respiration rates in the present study were 25 %. We also found that a decade-long drainage installation significantly increased shrub abundance, while decreasing Eriophorum angustifolium abundance resulted in Carex sp. dominance. These two changes had opposing influences on gross primary production during the growing season: while the increased abundance of shrubs slightly increased gross primary production, the replacement of E. angustifolium by Carex sp.  significantly decreased it. With the effects of ecosystem respiration and gross primary production combined, net CO2 uptake rates varied between the two years, which can be attributed to Carex-dominated plots' sensitivity to climate. However, underlying processes showed consistent patterns: 10 years of drainage increased soil temperatures in shallow layers and replaced E. angustifolium by Carex sp., which increased CO2 emission and reduced CO2 uptake rates. During the non-growing season, drainage resulted in 4 times more CO2 emissions, with high sporadic fluxes; these fluxes were induced by soil temperatures, E. angustifolium abundance, and air pressure.


2014 ◽  
Vol 11 (13) ◽  
pp. 3477-3493 ◽  
Author(s):  
J. Hommeltenberg ◽  
H. P. Schmid ◽  
M. Drösler ◽  
P. Werle

Abstract. This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-Alpine region of southern Germany. The sites are separated by only 10 km, they share the same soil formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo ssp. rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for 2 years (July 2010–June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (−130 ± 31 and −300 ± 66 g C m−2 a−1 in the first and second year, respectively) than the natural bog forest at Schechenfilz (−53 ± 28 and −73 ± 38 g C m−2 a−1). The strong net CO2 uptake can be explained by the high gross primary productivity of the 44-year old spruces that over-compensates the two-times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger plant area index (PAI) of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source when the whole life-cycle since forest planting is considered. It is important to access this result in terms of the long-term biome balance. To do so, we used historical data to estimate the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. This rough estimate indicates a strong carbon release of +134 t C ha−1 within the last 44 years. Thus, the spruces would need to grow for another 100 years at about the current rate, to compensate the potential peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but stable carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.


2014 ◽  
Vol 11 (6) ◽  
pp. 1627-1635 ◽  
Author(s):  
S. Zielis ◽  
S. Etzold ◽  
R. Zweifel ◽  
W. Eugster ◽  
M. Haeni ◽  
...  

Abstract. Understanding the response of forest net ecosystem productivity (NEP) to environmental drivers under climate change is highly relevant for predictions of annual forest carbon (C) flux budgets. Modeling annual forest NEP with soil–vegetation–atmosphere transfer models (SVATs), however, remains challenging due to unknown delayed responses to weather of the previous year. In this study, we addressed the influence of previous year's weather on the interannual variability of NEP for a subalpine spruce forest in Switzerland. Analysis of long-term (1997–2011) eddy covariance measurements showed that the Norway spruce forest Davos Seehornwald was a consistent sink for atmospheric CO2, sequestering 210 ± 88 g C m−2 yr−1 on average. Previous year's weather strongly affected interannual variability of NEP, increasing the explained variance in linear models to 53% compared to 20% without accounting for previous year's weather. Thus, our results highlight the need to consider previous year's weather in modeling annual C budgets of forests. Furthermore, soil temperature in the current year's spring played a major role controlling annual NEP, mainly by influencing gross primary productivity early in the year, with spring NEP accounting for 56% of annual NEP. Consequently, we expect an increase in net CO2 uptake with future climate warming, as long as no other resources become limiting.


2012 ◽  
Vol 9 (7) ◽  
pp. 9667-9710 ◽  
Author(s):  
M. Wilkinson ◽  
E. L. Eaton ◽  
M. S. J. Broadmeadow ◽  
J. I. L. Morison

Abstract. The carbon balance of an 80 yr old deciduous oak plantation in the temperate oceanic climate of the south-east of Britain was measured by eddy covariance over 12 yr (1999–2010). The mean annual net ecosystem productivity (NEP) was 486 g C m−2 y−1 (95% CI of ±73 g C m−2 y−1), and this was partitioned into a Gross Primary Productivity (GPP) of 2034 ± 145 g C m−2 y−1, over a 165 (±6) day growing season, and an annual loss of carbon through respiration and decomposition (ecosystem respiration, Reco) of 1548 ± 122 g C m−2 y−1. The interannual variation of NEP was large (coefficient of variation (CV) 23%), although the variation for GPP and Reco was smaller (12%) and the ratio of Reco/GPP was relatively constant (0.76 ± 0.02 CI). Some anomalies in the annual patterns of the carbon balance could be linked to particular combinations of anomalous weather events, such as high summer air temperature and low soil moisture content. The Europe-wide heat-wave and drought of 2003 had little effect on the C balance of this woodland on a surface water gley soil. Annual variation in precipitation (CV 18%) was not a main factor in the variation in NEP. The inter-annual variation in estimated intercepted radiation only accounted for ~ 47% of the variation in GPP, although a significant relationship (p<0.001) was found between peak leaf area index and annual GPP which in turn played an important role in modifying the efficiency with which incident radiation was used in net CO2 uptake. Whilst the spring start and late autumn end of the net CO2 uptake period varied substantially (range of 24 and 27 days, respectively), annual GPP was not related to growing season length. Severe outbreaks of defoliating moth caterpillars, mostly Tortrix viridana L. and Operophtera brumata L., caused considerable damage to the forest canopy in 2009 and 2010, resulting in reduced GPP in these years.


2014 ◽  
Vol 11 (10) ◽  
pp. 14981-15018 ◽  
Author(s):  
C. Helfter ◽  
C. Campbell ◽  
K. J. Dinsmore ◽  
J. Drewer ◽  
M. Coyle ◽  
...  

Abstract. Land–atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland, since 2002. Hence this is one of the longest peatland NEE studies to date. For 11 yr, the site was a consistent, yet variable, atmospheric CO2 sink ranging from −5.2 to −135.9 g CO2-C m−2 yr−1 (mean of −64.1 ± 33.6 g CO2-C m−2 yr−1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating a phenological memory-effect. Plant productivity exhibited a marked hysteresis with respect to photosynthetically active radiation (PAR) over the growing season, indicative of two separate growth regimes. Ecosystem respiration (Reco) and gross primary productivity (GPP) were closely correlated (ratio 0.74), suggesting that autotrophic processes were dominant. Whilst the site was wet most of the year (water table depth <5 cm) there were indications that heterotrophic respiration was enhanced by drought, which also depressed GPP. NEE was compared to 5 other peatland sites which have published long-term NEE records. The CO2 uptake rate during the growing season was comparable to 3 other European sites, however the emission rate during the dormant season was significantly higher.


2014 ◽  
Vol 11 (17) ◽  
pp. 4679-4693 ◽  
Author(s):  
X. Jia ◽  
T. S. Zha ◽  
B. Wu ◽  
Y. Q. Zhang ◽  
J. N. Gong ◽  
...  

Abstract. The carbon (C) cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration capacity of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE) over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1) quantify NEE and its components and to (2) examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP) of 456 g C m−2 yr−1 (with a 90% prediction interval of 449–463 g C m−2 yr−1) and an ecosystem respiration (Re) of 379 g C m−2 yr−1 (with a 90% prediction interval of 370–389 g C m−2 yr−1), resulting in a net C sink of 77 g C m−2 yr−1 (with a 90% prediction interval of 68–87 g C m−2 yr−1). The maximum daily NEE, GEP and Re were −4.7, 6.8 and 3.3 g C m−2 day−1, respectively. Both the maximum C assimilation rate (i.e., at the optimum light intensity) and the quantum yield varied over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water deficit exerted a major control over daytime NEE, and interacted with other stresses (e.g., heat and photoinhibition) in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10). At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1–2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme climatic events.


2013 ◽  
Vol 8 (4) ◽  
pp. 045028 ◽  
Author(s):  
J Kurbatova ◽  
F Tatarinov ◽  
A Molchanov ◽  
A Varlagin ◽  
V Avilov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document