scholarly journals Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO<sub>2</sub> emissions

2021 ◽  
Vol 21 (2) ◽  
pp. 1305-1323
Author(s):  
Yujiao Zhu ◽  
Likun Xue ◽  
Jian Gao ◽  
Jianmin Chen ◽  
Hongyong Li ◽  
...  

Abstract. Because anthropogenic sulfur dioxide (SO2) emissions have decreased considerably in the last decade, PM2.5 pollution in China has been alleviated to some extent. However, the effects of reduced SO2 on the particle number concentrations and subsequent contributions of grown new particles to cloud condensation nuclei (CCN) populations, particularly at high altitudes with low aerosol number loadings, are poorly understood. In contrast, the increase in provincial forest areas in China with rapid afforestation over the last few decades expectedly increases the biogenic emissions of volatile organic compounds and their oxidized products as nucleating precursors therein. In this study, we evaluated the campaign-based measurements made at the summit of Mt. Tai (1534 m a.s.l.) from 2007 to 2018. With the decrease in SO2 mixing ratios from 15 ± 13 ppb in 2007 to 1.6 ± 1.6 ppb in 2018, the apparent formation rate (FR) of new particles and the net maximum increase in the nucleation-mode particle number concentration (NMINP) in the spring campaign of 2018 was 2- to 3-fold higher than those in the spring campaign of 2007 with almost the same occurrence frequency of new particle formation (NPF) events. In contrast, the campaign-based comparison showed that the occurrence frequency, in which the maximum geometric median diameter of the grown new particles (Dpgmax) was > 50 nm, decreased considerably from 43 %–78 % of the NPF events before 2015 to < 12 % in 2017–2018. Assuming > 50 nm as a CCN threshold size at high supersaturations, the observed net CCN production decreased from 3.7 × 103 cm−3 (on average) in the five campaigns before 2015 to 1.0 × 103 cm−3 (on average) in the two campaigns in 2017–2018. We argue that the increases in the apparent FR and NMINP are mainly determined by the availability of organic precursors that participate in nucleation and initial growth, whereas the decrease in the growth probability is caused by the reduced emissions of anthropogenic precursors. However, large uncertainties still exist because of a lack of data on the chemical composition of these smaller particles.

2020 ◽  
Author(s):  
Yujiao Zhu ◽  
Likun Xue ◽  
Jian Gao ◽  
Jianmin Chen ◽  
Hongyong Li ◽  
...  

Abstract. Because anthropogenic sulfur dioxide (SO2) emissions have decreased considerably in the last decade, PM2.5 pollution in China has been alleviated to some extent. However, the effects of reduced SO2 on the particle number concentrations and subsequent contributions of grown new particles to the cloud condensation nuclei (CCN) populations, particularly at high altitude with low aerosol number loadings, are poorly understood. In this study, we evaluated the campaign-based measurements made at the summit of Mt. Tai (1534 m a.s.l.) from 2007 to 2018. With the decrease in the SO2 mixing ratios from 15 ± 13 ppb in 2007 to 1.6 ± 1.6 ppb in 2018, the formation rate of new particles (FR) and the net maximum increase in the nucleation-mode particle number concentration (NMINP) increased by 2–3 fold in 2018 against those in 2007. In contrast, the occurrence frequency of new particle formation (NPF) events in which the maximum geometric median diameter of grown new particles (Dpgmax) was > 50 nm decreased considerably from 43 %–78 % of the NPF events before 2015 to  50 nm as a CCN threshold size at high supersaturations, the observed net CCN production decreased from 3703 cm−3 (on average) before 2015 to 1026 cm−3 (on average) in 2017–2018. We argue that the increase in the FR and NMINP is mainly determined by the availability of organic precursors that participate in nucleation and initial growth, whereas the decrease in the growth probability is caused by the reduced emissions of anthropogenic precursors. However, large uncertainties still exist because of a lack of data on the chemical composition of these smaller particles.


2009 ◽  
Vol 9 (4) ◽  
pp. 15083-15123
Author(s):  
A. Hamed ◽  
W. Birmili ◽  
J. Joutsensaari ◽  
S. Mikkonen ◽  
A. Asmi ◽  
...  

Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn forms new aerosol particles (diameter <10 nm) through nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. Using two different data sets of experimental particle number size distributions (3–750 nm) from the research station Melpitz (1996–1997 and 2003–2006) we have attempted to evaluate the possible influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF). Between the two periods SO2 concentrations decreased on average by 65%, while the frequency of NPF events dropped by 45%. In addition, the average formation rate of 3 nm particles decreased by 68%. The trends were statistically significant, therefore suggesting a connection between the availability of anthropogenic SO2 and the production of new particle number. A contrasting finding was the increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and global radiation intensity, we could define the characteristic range of atmospheric conditions under which particle formation events at the Melpitz site take place or not. While the connection between anthropogenic SO2, H2SO4 and NPF appears very plausible, our analysis yielded no significant evidence whether decreasing SO2 concentrations did affect the production of cloud condensation nuclei (CCN).


2020 ◽  
Author(s):  
Agnieszka Kupc ◽  
Christina Williamson ◽  
Anna L. Hodshire ◽  
Jeffrey R. Pierce ◽  
Jan Kazil ◽  
...  

&lt;p&gt;Current estimates suggest that globally, about one third of low-level cloud condensation nuclei (CCN) originate from new particle formation (NPF) in the free troposphere. However, the exact mechanisms of how these new particles form and grow to CCN sizes are not yet well quantified. We investigate the formation of new particles and their initial growth in the remote marine atmosphere over the Pacific and Atlantic basins (~80 &amp;#176;N to ~86 &amp;#176;S using (1) gas-phase and size distribution measurements (0.003-4.8 &amp;#181;m) from the airborne-based NASA Atmospheric Tomography global survey (ATom; 2016-2018), (2) back trajectory data, and (3) two aerosol microphysics box models.&lt;/p&gt;&lt;p&gt;In the ATom observations, newly formed particles were ubiquitous at high altitudes throughout broad regions of the tropics and subtropics under low condensation sink conditions and were associated with upwelling in convective clouds. This pattern was observed over four seasons and both ocean basins.&lt;/p&gt;&lt;p&gt;In this study, we explore processes that govern NPF and growth in the tropical and subtropical free troposphere, discuss similarities and differences in NPF over both ocean basins, use box models to examine which nucleation schemes (e.g. binary, ternary, or charged) best explain the observations, and evaluate whether sulfuric acid precursors alone can explain the NPF and the initial particle growth. Comparing aerosol size distribution measurements with box model simulations shows that none of the NPF schemes commonly used in global models are consistent with observations, regardless of precursor concentrations. Newer schemes that incorporate organic compounds as nucleating or growth agents can plausibly replicate the observed size distributions. We conclude that organic precursor species may be particularly important in NPF in the tropical upper troposphere, even above marine regions.&lt;/p&gt;


2015 ◽  
Vol 15 (24) ◽  
pp. 13993-14003 ◽  
Author(s):  
F. Yu ◽  
G. Luo ◽  
S. C. Pryor ◽  
P. R. Pillai ◽  
S. H. Lee ◽  
...  

Abstract. Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~ 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.


2015 ◽  
Vol 15 (15) ◽  
pp. 21271-21298 ◽  
Author(s):  
F. Yu ◽  
G. Luo ◽  
S. C. Pryor ◽  
P. R. Pillai ◽  
S. H. Lee ◽  
...  

Abstract. Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF) but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics; Nucl-IMN). On average, NPF occurred on ~ 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly over-predicts while the Nucl-IMN scheme slightly under-predicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.


2010 ◽  
Vol 10 (3) ◽  
pp. 1071-1091 ◽  
Author(s):  
A. Hamed ◽  
W. Birmili ◽  
J. Joutsensaari ◽  
S. Mikkonen ◽  
A. Asmi ◽  
...  

Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn is a main precursor for atmospheric particle nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. We have attempted to evaluate the influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF) using two different data sets (1996–1997; 2003–2006) of experimental particle number size distributions (diameter range 3–750 nm) from the atmospheric research station Melpitz near Leipzig, Germany. Between the two periods SO2 concentrations decreased by 65% on average, while the frequency of NPF events dropped by 45%. Meanwhile, the average formation rate of 3 nm particles decreased by 68% on average. The trends were statistically significant and therefore suggest a connection between the availability of anthropogenic SO2 and freshly formed new particles. In contrast to the decrease in new particle formation, we found an increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and the global radiation intensity, we were able to define the characteristic range of atmospheric conditions under which particle formation events take place at the Melpitz site. While the decrease in the concentrations and formation rates of the new particles was rather evident, no similar decrease was found with respect to the generation of cloud condensation nuclei (CCN; particle diameter >100 nm) as a result of atmospheric nucleation events. On the contrary, the production of CCN following nucleation events appears to have increased by tens of percents. Our aerosol dynamics model simulations suggest that such an increase can be caused by the increased particle growth rate.


Nature ◽  
2016 ◽  
Vol 533 (7604) ◽  
pp. 527-531 ◽  
Author(s):  
Jasmin Tröstl ◽  
Wayne K. Chuang ◽  
Hamish Gordon ◽  
Martin Heinritzi ◽  
Chao Yan ◽  
...  

Abstract About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday1. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres2,3. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles4, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth5,6, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer7,8,9,10. Although recent studies11,12,13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon2, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)2,14, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.


2017 ◽  
Vol 17 (15) ◽  
pp. 9469-9484 ◽  
Author(s):  
Yujiao Zhu ◽  
Caiqing Yan ◽  
Renyi Zhang ◽  
Zifa Wang ◽  
Mei Zheng ◽  
...  

Abstract. This study is the first to use two identical Fast Mobility Particle Sizers for simultaneous measurement of particle number size distributions (PNSDs) at a street site and a rooftop site within 500 m distance in wintertime and springtime to investigate new particle formation (NPF) in Beijing. The collected datasets at 1 s time resolution allow deduction of the freshly emitted traffic particle signal from the measurements at the street site and thereby enable the evaluation of the effects on NPF in an urban atmosphere through a site-by-site comparison. The number concentrations of 8 to 20 nm newly formed particles and the apparent formation rate (FR) in the springtime were smaller at the street site than at the rooftop site. In contrast, NPF was enhanced in the wintertime at the street site with FR increased by a factor of 3 to 5, characterized by a shorter NPF time and higher new particle yields than at the rooftop site. Our results imply that the street canyon likely exerts distinct effects on NPF under warm or cold ambient temperature conditions because of on-road vehicle emissions, i.e., stronger condensation sinks that may be responsible for the reduced NPF in the springtime but efficient nucleation and partitioning of gaseous species that contribute to the enhanced NPF in the wintertime. The occurrence or absence of apparent growth for new particles with mobility diameters larger than 10 nm was also analyzed. The oxidization of biogenic organics in the presence of strong photochemical reactions is suggested to play an important role in growing new particles with diameters larger than 10 nm, but sulfuric acid is unlikely to be the main species for the apparent growth. However, the number of datasets used in this study is relatively small, and larger datasets are essential to draw a general conclusion.


2009 ◽  
Vol 9 (2) ◽  
pp. 10597-10645 ◽  
Author(s):  
F. Yu ◽  
G. Luo

Abstract. An advanced particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate particle number size distributions and cloud condensation nuclei (CCN) concentrations in the atmosphere. Size-resolved microphysics for secondary particles (i.e., those formed from gaseous species) and sea salt has been treated in the present study. The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the scavenging of secondary particles by primary particles (dust, black carbon, organic carbon, and sea salt). We calculate secondary particle formation rate based on ion-mediated nucleation (IMN) mechanism and constrain the parameterizations of primary particle emissions with various observations. Our simulations indicate that secondary particles formed via IMN appear to be able to account for the particle number concentrations observed in many parts of troposphere. A comparison of the simulated annual mean concentrations of condensation nuclei larger than 10 nm (CN10) with those measured values show very good agreement (within a factor of two) in near all 22 sites around the globe that have at least one full year of CN10 measurements. Secondary particles appear to dominate the number abundance in most parts of the troposphere. Calculated CCN concentration at supersaturation of 0.4% (CCN0.4) and the fraction of CCN0.4 that is secondary (fCCNsec) have large spatial variations. Over the middle latitude in the Northern Hemisphere, zonally averaged CCN0.4 decreases from ~400–700 cm−3 in the boundary layer (BL) to below 100 cm−3 above altitude of ~4 km, the corresponding fCCNsec values change from 50–60% to above ~70%. In the Southern Hemisphere, the zonally averaged CCN0.4 is below 200 cm−3 and fCCNsec is generally above 60% except in the BL over the Southern Ocean.


2009 ◽  
Vol 9 (20) ◽  
pp. 7691-7710 ◽  
Author(s):  
F. Yu ◽  
G. Luo

Abstract. An advanced particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate particle number size distributions and cloud condensation nuclei (CCN) concentrations in the atmosphere. Size-resolved microphysics for secondary particles (i.e., those formed from gaseous species) and sea salt has been treated in the present study. The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the scavenging of secondary particles by primary particles (dust, black carbon, organic carbon, and sea salt). We calculate secondary particle formation rate based on ion-mediated nucleation (IMN) mechanism and constrain the parameterizations of primary particle emissions with various observations. Our simulations indicate that secondary particles formed via IMN appear to be able to account for the particle number concentrations observed in many parts of the troposphere. A comparison of the simulated annual mean concentrations of condensation nuclei larger than 10 nm (CN10) with those measured values show very good agreement (within a factor of two) in near all 22 sites around the globe that have at least one full year of CN10 measurements. Secondary particles appear to dominate the number abundance in most parts of the troposphere. Calculated CCN concentration at supersaturation of 0.4% (CCN0.4) and the fraction of CCN0.4 that is secondary (fsecCCN) have large spatial variations. Over the middle latitude in the Northern Hemisphere, zonally averaged CCN0.4 decreases from ~400–700 cm−3 in the boundary layer (BL) to below 100 cm−3 above altitude of ~4 km, the corresponding fsecCCN values change from 50–60% to above ~70%. In the Southern Hemisphere, the zonally averaged CCN0.4 is below 200 cm−3 and fsecCCN is generally above 60% except in the BL over the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document