scholarly journals Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO<sub>2</sub> emissions between 1996 and 2006

2010 ◽  
Vol 10 (3) ◽  
pp. 1071-1091 ◽  
Author(s):  
A. Hamed ◽  
W. Birmili ◽  
J. Joutsensaari ◽  
S. Mikkonen ◽  
A. Asmi ◽  
...  

Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn is a main precursor for atmospheric particle nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. We have attempted to evaluate the influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF) using two different data sets (1996–1997; 2003–2006) of experimental particle number size distributions (diameter range 3–750 nm) from the atmospheric research station Melpitz near Leipzig, Germany. Between the two periods SO2 concentrations decreased by 65% on average, while the frequency of NPF events dropped by 45%. Meanwhile, the average formation rate of 3 nm particles decreased by 68% on average. The trends were statistically significant and therefore suggest a connection between the availability of anthropogenic SO2 and freshly formed new particles. In contrast to the decrease in new particle formation, we found an increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and the global radiation intensity, we were able to define the characteristic range of atmospheric conditions under which particle formation events take place at the Melpitz site. While the decrease in the concentrations and formation rates of the new particles was rather evident, no similar decrease was found with respect to the generation of cloud condensation nuclei (CCN; particle diameter >100 nm) as a result of atmospheric nucleation events. On the contrary, the production of CCN following nucleation events appears to have increased by tens of percents. Our aerosol dynamics model simulations suggest that such an increase can be caused by the increased particle growth rate.

2009 ◽  
Vol 9 (4) ◽  
pp. 15083-15123
Author(s):  
A. Hamed ◽  
W. Birmili ◽  
J. Joutsensaari ◽  
S. Mikkonen ◽  
A. Asmi ◽  
...  

Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn forms new aerosol particles (diameter <10 nm) through nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. Using two different data sets of experimental particle number size distributions (3–750 nm) from the research station Melpitz (1996–1997 and 2003–2006) we have attempted to evaluate the possible influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF). Between the two periods SO2 concentrations decreased on average by 65%, while the frequency of NPF events dropped by 45%. In addition, the average formation rate of 3 nm particles decreased by 68%. The trends were statistically significant, therefore suggesting a connection between the availability of anthropogenic SO2 and the production of new particle number. A contrasting finding was the increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and global radiation intensity, we could define the characteristic range of atmospheric conditions under which particle formation events at the Melpitz site take place or not. While the connection between anthropogenic SO2, H2SO4 and NPF appears very plausible, our analysis yielded no significant evidence whether decreasing SO2 concentrations did affect the production of cloud condensation nuclei (CCN).


2020 ◽  
Author(s):  
Martin Heinritzi ◽  
Lubna Dada ◽  
Mario Simon ◽  
Dominik Stolzenburg ◽  
Andrea C. Wagner ◽  
...  

Abstract. Nucleation of atmospheric vapors produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly-oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapors. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly-oxygenated dimers with 19 or 20 carbon atoms – which drive particle nucleation and early growth – while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C20 and C15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2·) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene/monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C15 dimers contribute to secondary organic aerosol and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH·) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene derived RO2· radicals that reduce C20 formation. RO2· termination emerges as the critical step that determines the HOM distribution and the corresponding nucleation capability. Species that reduce the C20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.


2020 ◽  
Vol 20 (20) ◽  
pp. 11809-11821 ◽  
Author(s):  
Martin Heinritzi ◽  
Lubna Dada ◽  
Mario Simon ◽  
Dominik Stolzenburg ◽  
Andrea C. Wagner ◽  
...  

Abstract. Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms – which drive particle nucleation and early growth – while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C20 and C15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2⚫) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene ∕ monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH⚫) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2⚫ radicals that reduce C20 formation. RO2⚫ termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 79 ◽  
Author(s):  
Tareq Hussein ◽  
Nahid Atashi ◽  
Larisa Sogacheva ◽  
Simo Hakala ◽  
Lubna Dada ◽  
...  

We characterized new particle formation (NPF) events in the urban background of Amman during August 2016–July 2017. The monthly mean of submicron particle number concentration was 1.2 × 104–3.7 × 104 cm−3 (exhibited seasonal, weekly, and diurnal variation). Nucleation mode (10–15 nm) concentration was 0.7 × 103–1.1 × 103 cm−3 during daytime with a sharp peak (1.1 × 103–1.8 × 103 cm−3) around noon. We identified 110 NPF events (≈34% of all days) of which 55 showed a decreasing mode diameter after growth. The NPF event occurrence was higher in summer than in winter, and events were accompanied with air mass back trajectories crossing over the Eastern Mediterranean. The mean nucleation rate (J10) was 1.9 ± 1.1 cm−3 s−1 (monthly mean 1.6–2.7 cm−3 s−1) and the mean growth rate was 6.8 ± 3.1 nm/h (4.1–8.8 nm/h). The formation rate did not have a seasonal pattern, but the growth rate had a seasonal variation (maximum around August and minimum in winter). The mean condensable vapor source rate was 4.1 ± 2.2 × 105 molecules/cm3 s (2.6–6.9 × 105 molecules/cm3 s) with a seasonal pattern (maximum around August). The mean condensation sink was 8.9 ± 3.3 × 10−3 s−1 (6.4–14.8 × 10−3 s−1) with a seasonal pattern (minimum around June and maximum in winter).


2020 ◽  
Author(s):  
Xuemei Wang ◽  
Daniel Grosvenor ◽  
Hamish Gordon ◽  
Meinrat O. Andreae ◽  
Ken Carslaw

&lt;p&gt;It has been estimated that over 50% of the present-day global low-level cloud condensation nuclei (CCN) are formed from new particle formation (NPF), and that this process has a substantial effect on the radiative properties of shallow clouds (Gordon et al. 2017). In contrast, we have a very limited understanding of how NPF affects deep convective clouds. Deep clouds could interact strongly with NPF because they extend into the high free troposphere where most new particles are formed, and they are responsible for most of the vertical transport of the nucleating vapours. Andreae et al. (2018) hypothesised from ACRIDICON-CHUVA campaign that organic gas molecules are transported by deep convection to the upper troposphere where they are oxidised and produce new particles, which are then be entrained into the boundary layer and grow to CCN-relevent sizes.&lt;/p&gt;&lt;p&gt;Here we study the interaction of deep convection and NPF using the United Kingdom Chemistry and Aerosols (UKCA) model coupled with the Cloud-AeroSol Interacting Microphyics (CASIM) embedded in the regional configuration of UK Met Office Hadley Centre Global Environment Model (HadGEM3). We simulate several days over a 1000 km region of the Amazon at 4 km resolution. We then compare the regional model, which resolves cloud up- and downdrafts, with the global model with parameterised convection and low resolution.&lt;/p&gt;&lt;p&gt;Our simulations highlight three findings. Firstly, solely using a binary H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;-H&lt;sub&gt;2&lt;/sub&gt;O nucleation mechanism strongly underestimates total aerosol concentrations compared to observations by a factor of 1.5-8 below 3 km over the Amazon. This points to the potential role of an additional nucleation mechanism, most likely involving biogenic compounds that occurs throughout more of the free troposphere. Secondly, deep convection transports insoluble gases such as DMS and monoterpenes vertically but not SO&lt;sub&gt;2&lt;/sub&gt;&amp;#160;or H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;. The time scale for DMS oxidation (~ 1 day) is much longer than for monoterpene (1-2 hours), which points to the importance of simulating biogenic nucleation over the Amazon in a cloud-resolving model, while lower-resolution global models may adequately capture DMS effects on H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt; nucleation. Finally, we also examine the Andreae et al (2018) hypothesis of aerosol supply to the boundary layer by quantifying cloud-free and cloudy up- and downdraft transport. The transport of newly formed aerosols into the boundary layer is 8 times greater in cloud-free regions than in the clouds, but these transport processes are of similar magnitude for large aerosols.&lt;/p&gt;


2009 ◽  
Vol 9 (2) ◽  
pp. 8223-8260 ◽  
Author(s):  
L. Q. Hao ◽  
P. Yli-Pirilä ◽  
P. Tiitta ◽  
S. Romakkaniemi ◽  
P. Vaattovaara ◽  
...  

Abstract. Measurements of particle formation following the gas phase oxidation of volatile organic compounds (VOCs) emitted by Scots pine (Pinus sylvestris L.) seedlings are reported. Particle nucleation and condensational growth both from ozone (O3) and hydroxyl radical (OH) initiated oxidation of pine emissions (about 20–120 ppb) were investigated in a~smog chamber. During experiments, tetramethylethylene (TME) and 2-butanol were added to control the concentrations of O3 and OH. Particle nucleation and condensational growth rates were interpreted with a chemical kinetics model. Scots pine emissions mainly included α-pinene, β-pinene, Δ3-carene, limonene, myrcene, β-phellandrene and isoprene, composing more than 95% of total emissions. Modeled OH concentration in the O3+OH induced experiments was at a level of ~106 molecular cm−3. Our results demonstrate that OH-initiated oxidation of VOCs plays an important role in the nucleation process during the initial new particle formation stage. The highest average nucleation rate of 360 cm−3 s−1 was observed for the OH-dominated nucleation events and the lowest aerosol mean formation rate less than 0.5 cm−3 s−1 for the case with only O3 present as an oxidant. On the other hand, ozonolysis of monoterpenes appears to be much more efficient to the aerosol growth process following nucleation. Higher contributions of more oxygenated products to the SOA mass loadings from OH-dominating oxidation systems were found as compared to the ozonolysis systems. Comparison of mass and volume distributions from the aerosol mass spectrometer and differential mobility analyzer yields estimated effective density of these SOA to be 1.34±0.06 g cm−3 with the OH plus O3 initiated oxidation systems and 1.38±0.03 g cm−3 with the ozonolysis dominated chemistry.


2021 ◽  
Vol 21 (3) ◽  
pp. 2287-2304
Author(s):  
Runlong Cai ◽  
Chenxi Li ◽  
Xu-Cheng He ◽  
Chenjuan Deng ◽  
Yiqun Lu ◽  
...  

Abstract. The growth rate of atmospheric new particles is a key parameter that determines their survival probability of becoming cloud condensation nuclei and hence their impact on the climate. There have been several methods to estimate the new particle growth rate. However, due to the impact of coagulation and measurement uncertainties, it is still challenging to estimate the initial growth rate of new particles, especially in polluted environments with high background aerosol concentrations. In this study, we explore the influences of coagulation on the appearance time method to estimate the growth rate of sub-3 nm particles. The principle of the appearance time method and the impacts of coagulation on the retrieved growth rate are clarified via derivations. New formulae in both discrete and continuous spaces are proposed to correct for the impacts of coagulation. Aerosol dynamic models are used to test the new formulae. New particle formation in urban Beijing is used to illustrate the importance of considering the impacts of coagulation on the sub-3 nm particle growth rate and its calculation. We show that the conventional appearance time method needs to be corrected when the impacts of coagulation sink, coagulation source, and particle coagulation growth are non-negligible compared to the condensation growth. Under the simulation conditions with a constant concentration of non-volatile vapors, the corrected growth rate agrees with the theoretical growth rates. However, the uncorrected parameters, e.g., vapor evaporation and the variation in vapor concentration, may impact the growth rate obtained with the appearance time method. Under the simulation conditions with a varying vapor concentration, the average bias in the corrected 1.5–3 nm particle growth rate ranges from 6 %–44 %, and the maximum bias in the size-dependent growth rate is 150 %. During the test new particle formation event in urban Beijing, the corrected condensation growth rate of sub-3 nm particles was in accordance with the growth rate contributed by sulfuric acid condensation, whereas the conventional appearance time method overestimated the condensation growth rate of 1.5 nm particles by 80 %.


2008 ◽  
Vol 8 (2) ◽  
pp. 6313-6353 ◽  
Author(s):  
L. Laakso ◽  
H. Laakso ◽  
P. P. Aalto ◽  
P. Keronen ◽  
T. Petäjä ◽  
...  

Abstract. We have analyzed one year (July 2006–July 2007) of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. Gases and particles had a clear seasonal and diurnal variation, which was associated with field fires and biological activity together with local meteorology. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1) and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1). Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.


2020 ◽  
Vol 20 (21) ◽  
pp. 13425-13441
Author(s):  
Haebum Lee ◽  
Kwangyul Lee ◽  
Chris Rene Lunder ◽  
Radovan Krejci ◽  
Wenche Aas ◽  
...  

Abstract. We conducted continuous measurements of nanoparticles down to 3 nm size in the Arctic at Mount Zeppelin, Ny Ålesund, Svalbard, from October 2016 to December 2018, providing a size distribution of nanoparticles (3–60 nm). A significant number of nanoparticles as small as 3 nm were often observed during new particle formation (NPF), particularly in summer, suggesting that these were likely produced near the site rather than being transported from other regions after growth. The average NPF frequency per year was 23 %, having the highest percentage in August (63 %). The average formation rate (J) and growth rate (GR) for 3–7 nm particles were 0.04 cm−3 s−1 and 2.07 nm h−1, respectively. Although NPF frequency in the Arctic was comparable to that in continental areas, the J and GR were much lower. The number of nanoparticles increased more frequently when air mass originated over the south and southwest ocean regions; this pattern overlapped with regions having strong chlorophyll a concentration and dimethyl sulfide (DMS) production capacity (southwest ocean) and was also associated with increased NH3 and H2SO4 concentration, suggesting that marine biogenic sources were responsible for gaseous precursors to NPF. Our results show that previously developed NPF occurrence criteria (low loss rate and high cluster growth rate favor NPF) are also applicable to NPF in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document