scholarly journals Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling

2021 ◽  
Vol 21 (21) ◽  
pp. 16319-16347
Author(s):  
Fabienne Dahinden ◽  
Franziska Aemisegger ◽  
Heini Wernli ◽  
Matthias Schneider ◽  
Christopher J. Diekmann ◽  
...  

Abstract. Due to its dryness, the subtropical free troposphere plays a critical role in the radiative balance of the Earth's climate system. But the complex interactions of the dynamical and physical processes controlling the variability in the moisture budget of this sensitive region of the subtropical atmosphere are still not fully understood. Stable water isotopes can provide important information about several of the latter processes, namely subsidence drying, turbulent mixing, and dry and moist convective moistening. In this study, we use high-resolution simulations of the isotope-enabled version of the regional weather and climate prediction model of the Consortium for Small-Scale Modelling (COSMOiso) to investigate predominant moisture transport pathways in the Canary Islands region in the eastern subtropical North Atlantic. Comparison of the simulated isotope signals with multi-platform isotope observations (aircraft, ground- and space-based remote sensing) from a field campaign in summer 2013 shows that COSMOiso can reproduce the observed variability of stable water vapour isotopes on timescales of hours to days, thus allowing us to study the mechanisms that control the subtropical free-tropospheric humidity. Changes in isotopic signals along backward trajectories from the Canary Islands region reveal the physical processes behind the synoptic-scale isotope variability. We identify four predominant moisture transport pathways of mid-tropospheric air, each with distinct isotopic signatures: air parcels originating from the convective boundary layer of the Saharan heat low (SHL) – these are characterised by a homogeneous isotopic composition with a particularly high δD (median mid-tropospheric δD=-122‰), which results from dry convective mixing of low-level moisture of diverse origin advected into the SHL; air parcels originating from the free troposphere above the SHL – although experiencing the largest changes in humidity and δD during their subsidence over West Africa, these air parcels typically have lower δD values (median δD=-148‰) than air parcels originating from the boundary layer of the SHL; air parcels originating from outside the SHL region, typically descending from tropical upper levels south of the SHL, which are often affected by moist convective injections from mesoscale convective systems in the Sahel – their isotopic composition is much less enriched in heavy isotopes (median δD=-175‰) than those from the SHL region; air parcels subsiding from the upper-level extratropical North Atlantic – this pathway leads to the driest and most depleted conditions (median δD=-255‰) in the middle troposphere near the Canary Islands. The alternation of these transport pathways explains the observed high variability in humidity and δD on synoptic timescales to a large degree. We further show that the four different transport pathways are related to specific large-scale flow conditions. In particular, distinct differences in the location of the North African mid-level anticyclone and of extratropical Rossby wave patterns occur between the four transport pathways. Overall, this study demonstrates that the adopted Lagrangian isotope perspective enhances our understanding of air mass transport and mixing and offers a sound interpretation of the free-tropospheric variability of specific humidity and isotope composition on timescales of hours to days in contrasting atmospheric conditions over the eastern subtropical North Atlantic.

2021 ◽  
Author(s):  
Fabienne Dahinden ◽  
Franziska Aemisegger ◽  
Heini Wernli ◽  
Matthias Schneider ◽  
Christopher J. Diekmann ◽  
...  

Abstract. Due to its dryness, the subtropical free troposphere plays a critical role in the radiative balance of the Earth’s climate system. But the complex interactions of the dynamical and physical processes controlling the variability in the moisture budget of this sensitive region of the subtropical atmosphere are still not fully understood. Stable water isotopes can provide important information about several of the latter processes, namely subsidence drying, turbulent mixing, dry and moist convective moistening. In this study, we use high-resolution simulations of the isotope-enabled version of the regional weather and climate prediction model of the Consortium for Small-Scale Modelling (COSMOiso) to investigate predominant moisture transport pathways in the Canary Islands region in the eastern subtropical North Atlantic. Comparison of the simulated isotope signals with multi-platform isotope observations (aircraft-based in situ measurements, ground-based and space-based remote sensing observations) from a field campaign in summer 2013 shows that COSMOiso can reproduce the observed variability of stable water vapour isotopes on time scales of hours to days, and thus allows studying the mechanisms that control the subtropical free-tropospheric humidity. Changes of isotopic signals along backward trajectories from the Canary Islands region reveal the physical processes behind the short-term isotope variability. We identify four predominant moisture transport pathways of mid-tropospheric air, each with distinct isotopic signatures: (1) Air parcels originating from the convective boundary layer of the Saharan heat low (SHL). These are characterised by a homogenous isotopic composition with a particularly high δD (median mid-tropospheric δD = −122 ‰), which results from dry convective mixing of low-level moisture of diverse origin advected into the SHL. (2) Air parcels originating from the free troposphere above the SHL. Although experiencing the largest changes in humidity and δD during their subsidence over West Africa, these air parcels typically have lower δD values (median δD = −148 ‰) than air parcels originating from the boundary layer of the SHL. (3) Air parcels originating from outside the SHL region, typically descending from tropical upper levels south of the SHL, which are often affected by moist convective injections from mesoscale convective systems in the Sahel. Their isotopic composition is much less enriched in heavy isotopes (median δD = −175 ‰) than those from the SHL region. (4) Air parcels subsiding from the upper-level extratropical North Atlantic. This pathway leads to the driest and most depleted conditions (median δD = −255 ‰) in the middle troposphere near the Canary Islands. The alternation of these transport pathways explains to a large degree the observed high variability in humidity and δD on synoptic time scales. We further show that the four different transport pathways are related to specific large scale-flow conditions. In particular, distinct differences in the location of the North African mid-level anticyclone and of extratropical Rossby wave patterns occur between the four transport pathways. Overall, this study demonstrates that the adopted Lagrangian isotope perspective enhances our understanding of air mass transport and mixing and offers a sound interpretation of the free-tropospheric variability of specific humidity and isotope composition on time scales of hours to days in contrasting atmospheric conditions over the eastern subtropical North Atlantic.


2015 ◽  
Vol 120 (6) ◽  
pp. 2190-2209 ◽  
Author(s):  
Marion Benetti ◽  
Giovanni Aloisi ◽  
Gilles Reverdin ◽  
Camille Risi ◽  
Geneviève Sèze

2021 ◽  
Author(s):  
Lukas Papritz ◽  
David Hauswirth ◽  
Katharina Hartmuth

Abstract. Poleward moisture transport occurs in episodic, high-amplitude events with strong impacts on the Arctic and its climate system components such as sea ice. This study focuses on the origin of such events and examines the moisture sources, moisture transport pathways, and their linkage to the large-scale circulation. For that purpose, 597 events of intense zonal mean poleward moisture transport at 70° N (exceeding the 90th anomaly percentile) are identified and kinematic backward trajectories from 70° N are computed to pinpoint the moisture sources and characterize the air-streams accomplishing the transport. The bulk of the moisture transported into the polar cap during these events originates in the eastern North Atlantic with an uptake maximum poleward of 50° N. This asymmetry between ocean basins is a direct consequence of the fact that most of the moisture transport into the polar cap occurs in this sector. As a result of the fairly high-latitude origin of the moisture, the median time moisture spends in the atmosphere prior to reaching 70° N amounts to about 2.5 days. Trajectories further reveal an inverse relationship between moisture uptake latitude and the level at which moisture is injected into the polar cap, consistent with ascent of poleward flowing air in a baroclinic atmosphere. Focusing on events for which 75 % of the zonal mean moisture transport takes place in the North Atlantic east of Greenland (424 events) reveals that lower tropospheric moisture transport results predominantly from two types of air-streams: (i) cold, polar air advected from the Canadian Arctic over the North Atlantic and around Greenland, whereby the air is warmed and moistened by surface fluxes, and (ii) air subsiding from the mid-troposphere into the boundary layer. Both air-streams contribute about 36 % each to the total transport. The former dominates the moisture transport during events associated with an anomalously high frequency of cyclones east of Greenland (218 events), whereas the latter is more important in the presence of atmospheric blocking over Scandinavia and the Ural (145 events). A substantial portion of the moisture sources associated with both types of air-streams are located between Iceland, the British Isles, and Norway. Long-range moisture transport, accounting for 17 % of the total transport, is the dominant type of air-stream during events with weak forcing by baroclinic weather systems (64 events). Finally, mid-tropospheric moisture transport is invariably associated with (diabatically) ascending air and moisture origin in the central and western North Atlantic, including the Gulf Stream front, accounting for roughly 10 % of the total transport. In summary, our study reveals that moisture injections into the polar atmosphere are not primarily caused by the poleward transport of warm and humid air from low latitudes – a conclusion that applies in particular to cases where the transport is driven by baroclinic weather systems such as extratropical cyclones. Instead, it results from a combination of air-streams with pre-dominantly high-latitude or high-altitude origin and their interplay with large-scale weather systems (e.g., cyclones, blocks).


2013 ◽  
Vol 13 (4) ◽  
pp. 1973-1998 ◽  
Author(s):  
E. Cuevas ◽  
Y. González ◽  
S. Rodríguez ◽  
J. C. Guerra ◽  
A. J. Gómez-Peláez ◽  
...  

Abstract. An analysis of the 22-yr ozone (O3) series (1988–2009) at the subtropical high mountain Izaña~station (IZO; 2373 m a.s.l.), representative of free troposphere (FT) conditions, is presented. Diurnal and seasonal O3 variations as well as the O3 trend (0.19 ± 0.05 % yr−1 or 0.09 ppbv yr−1), are assessed. A climatology of O3 transport pathways using backward trajectories shows that higher O3 values are associated with air masses travelling above 4 km altitude from North America and North Atlantic Ocean, while low O3 is transported from the Saharan continental boundary layer (CBL). O3 data have been compared with PM10, 210Pb, 7Be, potential vorticity (PV) and carbon monoxide (CO). A clear negative logarithmic relationship was observed between PM10 and surface O3 for all seasons. A similar relationship was found between O3 and 210Pb. The highest daily O3 values (90th percentile) are observed in spring and in the first half of summer time. A positive correlation between O3 and PV, and between O3 and 7Be is found throughout the year, indicating that relatively high surface O3 values at IZO originate from the middle and upper troposphere. We find a good correlation between O3 and CO in winter, supporting the hypothesis of long-range transport of photochemically generated O3 from North America. Aged air masses, in combination with sporadic inputs from the upper troposphere, are observed in spring, summer and autumn. In summer time high O3 values seem to be the result of stratosphere-to-troposphere (STT) exchange processes in regions neighbouring the Canary Islands. Since 1995–1996, the North Atlantic Oscillation has changed from a predominantly high positive phase to alternating between negative, neutral or positive phases. This change results in an increased flow of the westerlies in the mid-latitude and subtropical North Atlantic, thus favouring the transport of O3 and its precursors from North America, and a higher frequency of storms over North Atlantic, with a likely higher incidence of STT processes in mid-latitudes. These processes lead to an increase of tropospheric O3 in the subtropical North Atlantic region after 1996 that has been reflected in surface O3 records at IZO.


Author(s):  
Holger Siebert ◽  
Kai-Erik Szodry ◽  
Ulrike Egerer ◽  
Birgit Wehner ◽  
Silvia Henning ◽  
...  

Capsule summary.Helicopter-borne observations with unprecedented high resolution provide new insights in the fine-scale structure of marine boundary layer clouds and aerosol stratification over the Eastern North Atlantic.


2015 ◽  
Vol 15 (19) ◽  
pp. 27219-27251
Author(s):  
Y. González ◽  
M. Schneider ◽  
C. Dyroff ◽  
S. Rodríguez ◽  
E. Christner ◽  
...  

Abstract. We present two years of measurements of water vapour (H2O) and its isotopologue ratio (δD, the standardized ratio between H216O and HD16O) made at two remote mountain sites on Tenerife Island in the subtropical North Atlantic. We show that the data – if measured during nighttime – are well representative for the lower/middle free troposphere. We use the measured H2O-δD pairs, together with dust measurements and back-trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The first two pathways are linked to transport from high altitudes and high latitudes, whereby the respective air can be dry, due to last condensation occurring at low temperatures, as well as humid, due to cross isentropic mixing with lower level and more humid air during transport since last condensation. The third pathway is transport from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL) is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that different pathways leave distinct fingerprints on the measured H2O-δD pairs.


2016 ◽  
Vol 16 (7) ◽  
pp. 4251-4269 ◽  
Author(s):  
Yenny González ◽  
Matthias Schneider ◽  
Christoph Dyroff ◽  
Sergio Rodríguez ◽  
Emanuel Christner ◽  
...  

Abstract. We present two years of in situ measurements of water vapour (H2O) and its isotopologue ratio (δD, the standardized ratio between H216O and HD16O), made at two remote mountain sites on Tenerife in the subtropical North Atlantic. We show that the data – if measured during night-time – are well representative for the lower/middle free troposphere. We use the measured H2O-δD pairs, together with dust measurements and back trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The air mass transport from high altitudes and high latitudes shows two different scenarios. The first scenario brings dry air masses to the stations, as the result of condensation events occurring at low temperatures. The second scenario brings humid air masses to the stations, due to cross-isentropic mixing with lower-level and more humid air during transport since last condensation (LC). The third pathway is transportation from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer, dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL) is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that the different pathways leave distinct fingerprints on the measured H2O-δD pairs.


2004 ◽  
Vol 38 (28) ◽  
pp. 4733-4747 ◽  
Author(s):  
Sergio Rodrı́guez ◽  
Carlos Torres ◽  
Juan-Carlos Guerra ◽  
Emilio Cuevas

Sign in / Sign up

Export Citation Format

Share Document