scholarly journals Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions

2021 ◽  
Vol 21 (23) ◽  
pp. 17529-17557
Author(s):  
Francisco J. Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Sergio Soler ◽  
Francisco J. Gordillo-Vázquez ◽  
Nicolau Pineda ◽  
...  

Abstract. Lightning is the major cause of the natural ignition of wildfires worldwide and produces the largest wildfires in some regions. Lightning strokes produce about 5 % of forest fires in the Mediterranean Basin and are one of the most important precursors of the largest forest fires during the summer. Lightning-ignited wildfires produce significant emissions of aerosols, black carbon, and trace gases, such as CO, SO2, CH4, and O3, affecting air quality. Characterization of the meteorological and cloud conditions of lightning-ignited wildfires in the Mediterranean Basin can serve to improve fire forecasting models and to upgrade the implementation of fire emissions in atmospheric models. This study investigates the meteorological and cloud conditions of lightning-ignited wildfires (LIWs) and long continuing current (LCC) lightning flashes in the Iberian Peninsula and Greece. LCC lightning and lightning in dry thunderstorms with a low precipitation rate have been proposed to be the main precursors of the largest wildfires. We use lightning data provided by the World Wide Lightning Location Network (WWLLN), the Earth Networks Total Lightning Network (ENTLN), and the Lightning Imaging Sensor (LIS) on board the International Space Station (ISS), together with four databases of wildfires produced in Spain, Portugal, southern France, and Greece, respectively, in order to produce a climatology of LIWs and LCC lightning over the Mediterranean Basin. In addition, we use meteorological data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data set and by the Spanish State Meteorological Agency (AEMET), together with the Cloud Top Height product (CTHP) derived from Meteosat Second Generation (MSG) satellites measurements to investigate the meteorological conditions of LIWs and LCC lightning. According to our results, LIWs and a significant amount of LCC lightning flashes tend to occur in dry thunderstorms with weak updrafts. Our results suggest that LIWs tend to occur in clouds with a high base and with a vertical content of moisture lower than the climatological value, as well as with a higher temperature and a lower precipitation rate. Meteorological conditions of LIWs from the Iberian Peninsula and Greece are in agreement, although some differences possibly caused by the highly variable topography in Greece and a more humid environment are observed. These results show the possibility of using the typical meteorological and cloud conditions of LCC lightning flashes as proxy to parameterize the ignition of wildfires in atmospheric or forecasting models.

2021 ◽  
Author(s):  
Francisco J. Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Sergio Soler ◽  
Francisco J. Gordillo-Vázquez ◽  
Nicolau Pineda ◽  
...  

Abstract. Lightning is the major cause of natural ignition of wildfires worldwide and produces the largest wildfires in some regions. Lightning strokes produce about 5 % of forest fires in the Mediterranean basin and are one of the most important precursors of the largest forest fires during the summer. Lightning-ignited wildfires produce significant emissions of aerosols, black carbon and trace gases, such as CO, SO2, CH4 and O3, affecting air quality. Characterization of the meteorological and cloud conditions of lightning-ignited wildfires in the Mediterranean basin can serve to improve fire forecasting models and to upgrade the implementation of fire emissions in atmospheric models. This study investigates the meteorological and cloud conditions of Lightning-Ignited Wildfires (LIW) and Long-Continuing-Current (LCC) lightning flashes in the Iberian Peninsula and Greece. LCC lightning and lightning in dry thunderstorms with low precipitation rate have been proposed to be the main precursors of the largest wildfires. We use lightning data provided by the World Wide Lightning Location Network (WWLLN), the Earth Network Total Lightning Network (ENTLN) and the Lightning Imaging Sensor (LIS) onboard the International Space Station (ISS) together with four databases of wildfires produced in Spain, Portugal, Southern France and Greece, respectively, in order to produce a climatology of LIW and LCC lightning over the Mediterranean basin. In addition, we use meteorological data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-reanalysis data set and by the Spanish State Meteorological Agency (AEMET) together with the Cloud Top Height (CTH) product derived from Meteosat Second Generation (MSG) satellites measurements to investigate the meteorological conditions of LIW and LCC lightning. According to our results, LIW and a significant amount of LCC lightning flashes tend to occur in dry thunderstorms with weak updrafts. Our results suggest that lightning-ignited wildfires tend to occur in high-based clouds with a vertical content of moisture lower than the climatological value, as well as with a higher temperature and a lower precipitation rate. Meteorological conditions of LIW from the Iberian Peninsula and Greece are in agreement, although some differences possibly caused by highly variable topography in Greece and a more humid environment are observed. These results show the possibility of using the typical meteorological and cloud conditions of LCC lightning flashes as proxy to parameterize the ignition of wildfires in atmospheric or forecasting models.


2010 ◽  
Vol 10 (11) ◽  
pp. 5089-5105 ◽  
Author(s):  
I. Schicker ◽  
S. Radanovics ◽  
P. Seibert

Abstract. Considering the Mediterranean as a region of high evaporation and low precipitation, evaluations of sinks and sources of moisture and precipitation in the Mediterranean basin have been carried out within the frame of the CIRCE (Climate Change and Impact Research: the Mediterranean Environment) project. Besides these evaluations, residence time and stagnation/ventilation analyses have been carried out to investigate transport to and from the Mediterranean basin and in the basin itself. A Lagrangian moisture diagnosis method calculating budgets of evaporation minus precipitation was applied to a 5.5 year (October 1999–April 2005) trajectory data set and evaluated for eight representative Mediterranean Regions Of Interest (ROI). The Mediterranean basin has been identified as a major source of moisture and precipitation to the surrounding land area and to the basin itself. Main regions of stagnation, i.e. the Po basin, have been defined on a seasonal basis through residence time analysis. Evaluation of the transport to and from the basin shows that the Mediterranean is a crossroad of airstreams where air enters mainly from the northwest and continues in two separate streams, one going southwest over North Africa into the trade wind zone and the other one to the northeast through Central Asia.


2021 ◽  
Author(s):  
Johannes Vogel

<p>The ecosystems of the Mediterranean Basin are particularly prone to climate change and related alterations in climatic anomalies. The seasonal timing of climatic anomalies is crucial for the assessment of the corresponding ecosystem impacts; however, the incorporation of seasonality is neglected in many studies. We quantify ecosystem vulnerability by investigating deviations of the climatic drivers temperature and soil moisture during phases of low ecosystem productivity for each month of the year over the period 1999 – 2019. The fraction of absorbed photosynthetically active radiation (FAPAR) is used as a proxy for ecosystem productivity. Air temperature is obtained from the reanalysis data set ERA5 Land and soil moisture and FAPAR satellite products are retrieved from ESA CCI and Copernicus Global Land Service, respectively. Our results show that Mediterranean ecosystems are vulnerable to three soil moisture regimes during the course of the year. A phase of vulnerability to hot and dry conditions during late spring to midsummer is followed by a period of vulnerability to cold and dry conditions in autumn. The third phase is characterized by cold and wet conditions coinciding with low ecosystem productivity in winter and early spring. These phases illustrate well the shift between a soil moisture-limited regime in summer and an energy-limited regime in winter in the Mediterranean Basin. Notably, the vulnerability to hot and dry conditions during the course of the year is prolonged by several months in the Eastern Mediterranean compared to the Western Mediterranean. Our approach facilitates a better understanding of ecosystem vulnerability at certain stages during the year and is easily transferable to other study areas and ecoclimatological variables.</p>


2011 ◽  
Vol 250-253 ◽  
pp. 1143-1146 ◽  
Author(s):  
José Ramón Ruiz Checa ◽  
Valentina Cristini

This research presents some features about juniper timber, above all related with aspects of its structural use (for supports, pillars, beams, roofs...) in some vernacular architecture. Therefore, a special attention is driven to botanical, technical, mechanical features, typical for this type of rare wood. Its traditional use in the Iberian Peninsula and throughout the Mediterranean Basin is still visible in some cases of study, presented in the research. Good constructive qualities make juniper timber a great candidate for further test-researches and experiments, focalized on the family of traditional and”ever green “constructive materials.


2009 ◽  
Vol 9 (2) ◽  
pp. 7413-7455 ◽  
Author(s):  
S. Turquety ◽  
D. Hurtmans ◽  
J. Hadji-Lazaro ◽  
P.-F. Coheur ◽  
C. Clerbaux ◽  
...  

Abstract. In this paper, we analyze the performance of the Infrared Atmospheric Sounding Interferometer (IASI), launched in October 2006 on board METOP-A, for the monitoring of carbon monoxide (CO) during extreme fire events, focusing on the record-breaking fires which devastated thousands of square kilometers of forest in Greece during the last week (23–30) of August 2007. After an assessment of the quality of the profiles retrieved using the Fast Optimal Retrievals on Layers for IASI (FORLI) algorithm, the information provided on fire emissions and subsequent pollution outflow is discussed. Large CO plumes were observed above the Mediterranean Basin and North Africa, with total CO columns exceeding 30×1018 molecules/cm2 and absolute volume mixing ratio up to 22 ppmv. The average root-mean-square (RMS) difference between simulated and observed spectra is close to the estimated radiometric noise level, slightly increasing (by ~14%) in the fresh fire plumes. CO profiles are retrieved with a vertical resolution of about 8 km, with ~1.7 pieces of independent information on the vertical in the region considered and a maximum sensitivity in the free troposphere (~4–5 km). Using the integrated total amount, the increase in CO burden due to these fires is estimated to 0.321 Tg, ~40% of the total annual anthropogenic emissions in Greece. These CO enhancements are in good agreement with the aerosol optical depth (AOD) retrieved from the MODIS measurements, highlighting a rapid transport of trace gases and aerosols across the Mediterranean Basin (less than one day). While the coarse vertical resolution will not allow the location of the exact plume height, the large CO enhancements observed in the lower troposphere are consistent with the maximum aerosol backscatter coefficient at ~2 km detected by the CALIPSO lidar in space (CALIOP). This indicates that the general level of transport can be derived (lower, middle or upper troposphere) but that it needs to be accompanied by a systematic confrontation with sensitivity profiles and boundary layer height.


2009 ◽  
Vol 9 (5) ◽  
pp. 21425-21461
Author(s):  
I. Schicker ◽  
S. Radanovics ◽  
P. Seibert

Abstract. Considering the Mediterranean as a region of high evaporation and low precipitation, evaluations of the moisture and precipitation sources and sinks in the Mediterranean basin have been carried out within the frame of the CIRCE project. In addition, residence time and stagnation/ventilation have been analysed to investigate transport to and from the Mediterranean basin and in the basin itself. A Lagrangian moisture diagnosis method calculating budgets of evaporation minus precipitation was applied to a 5.5 year (October 1999–April 2005) trajectory data set and evaluated for eight Mediterranean regions of interest. The Mediterranean basin has been identified as a major source of moisture and precipitation to the surrounding land area and to the basin itself. Regions of stagnation have been identified through the analysis of the average 24-hour and 5-day displacements for the four seasons, and the Po basin was identified as being strongly affected by stagnation. Evaluation of the transport to and from the basin shows that the Mediterranean is a crossroad of airstreams where air enters mainly from the northwest and continues in two separate airstreams: one turns towards southwest, passing over North Africa into the trade wind zone while the other one continues northeastwards through Central Asia.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1043 ◽  
Author(s):  
Tommaso Caloiero ◽  
Simone Veltri ◽  
Paola Caloiero ◽  
Francesco Frustaci

In this study, drought events over a large area of the Northern Hemisphere, including continental Europe, Ireland, the United Kingdom, and the Mediterranean basin, were analyzed using the Standardized Precipitation Index (SPI) at various times scales (3, 6, 12, and 24 months). To this purpose, the Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product Version 2018 data set, with spatial resolutions of 0.5° longitude/latitude and for the period 1951–2016, has been used. First, the temporal evolution of the percentage of grid points, falling within the severe and extreme drought categories, has been evaluated. Then, a trend analysis has been performed at a seasonal scale, considering the autumn-winter and the spring-summer periods, and at an annual scale. The results of this paper highlight that the Mediterranean basin and North Africa are the most consistently vulnerable areas showing a general reduction in SPI values especially for the long time scale.


2014 ◽  
Vol 14 (5) ◽  
pp. 1185-1194 ◽  
Author(s):  
J. Mazon ◽  
D. Pino

Abstract. Three offshore rainbands associated with nocturnal coastal fronts formed near the Israeli coastline, the Gulf of Genoa and on the northeastern coast of the Iberian Peninsula, are simulated using version 3.3 of the WRF-ARW mesoscale model in order to study the dynamics of the atmosphere in each case. The simulations show coastal fronts producing relatively high (in comparison with some other similar rainbands) 1 and 10 h accumulated precipitations that formed in the Mediterranean Basin. According to these simulations, the coastal fronts that formed near the Israeli coastline and over the Gulf of Genoa are quasi-stationary, while the one that formed on the northeastern coast of the Iberian Peninsula moves away from the coast. For the three events, we evaluate and intercompare some parameters related to convective triggering, deceleration induced by the cold pool in the upstream flow, and the blockage that the cold coastal front offers to the warmer maritime air mass.


Sign in / Sign up

Export Citation Format

Share Document