scholarly journals Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes

2021 ◽  
Vol 21 (5) ◽  
pp. 4123-4147
Author(s):  
Haiyan Li ◽  
Manjula R. Canagaratna ◽  
Matthieu Riva ◽  
Pekka Rantala ◽  
Yanjun Zhang ◽  
...  

Abstract. Atmospheric organic vapors play essential roles in the formation of secondary organic aerosol. Source identification of these vapors is thus fundamental to understanding their emission sources and chemical evolution in the atmosphere and their further impact on air quality and climate change. In this study, a Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF) was deployed in two forested environments, the Landes forest in southern France and the boreal forest in southern Finland, to measure atmospheric organic vapors, including both volatile organic compounds (VOCs) and their oxidation products. For the first time, we performed binned positive matrix factorization (binPMF) analysis on the complex mass spectra acquired with the Vocus PTR-TOF and identified various emission sources as well as oxidation processes in the atmosphere. Based on separate analysis of low- and high-mass ranges, 15 PMF factors in the Landes forest and nine PMF factors in the Finnish boreal forest were resolved, showing a high similarity between the two sites. Particularly, terpenes and various terpene reaction products were separated into individual PMF factors with varying oxidation degrees, such as lightly oxidized compounds from both monoterpene and sesquiterpene oxidation, monoterpene-derived organic nitrates, and monoterpene more oxidized compounds. Factors representing monoterpenes dominated the biogenic VOCs in both forests, with lower contributions from the isoprene factors and sesquiterpene factors. Factors of the lightly oxidized products, more oxidized products, and organic nitrates of monoterpenes/sesquiterpenes accounted for 8 %–12 % of the measured gas-phase organic vapors in the two forests. Based on the interpretation of the results relating to oxidation processes, further insights were gained regarding monoterpene and sesquiterpene reactions. For example, a strong relative humidity (RH) dependence was found for the behavior of sesquiterpene lightly oxidized compounds. High concentrations of these compounds only occur at high RH; yet similar behavior was not observed for monoterpene oxidation products.

2020 ◽  
Author(s):  
Haiyan Li ◽  
Manjula R. Canagaratna ◽  
Matthieu Riva ◽  
Pekka Rantala ◽  
Yanjun Zhang ◽  
...  

Abstract. Atmospheric organic vapors play essential roles in the formation of secondary organic aerosol. Source identification of these vapors is thus fundamental to understand their emission sources and chemical evolution in the atmosphere and their further impact on air quality and climate change. In this study, a Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF) was deployed in two forested environments, the Landes forest in southern France and the boreal forest in southern Finland, to measure atmospheric organic vapors, including both volatile organic compounds (VOCs) and their oxidation products. For the first time, we performed binned positive matrix factorization (binPMF) analysis on the complex mass spectra acquired with the Vocus PTR-TOF and identified various emission sources as well as oxidation processes in the atmosphere. Based on separate analysis of low- and high-mass ranges, fifteen PMF factors in the Landes forest and nine PMF factors in the Finnish boreal forest were resolved, showing a high similarity between the two sites. Factors representing monoterpenes dominate the biogenic VOCs in both forests, with less contributions from the isoprene factors and sesquiterpene factors. Particularly, various terpene reaction products were separated into individual PMF factors with varying oxidation degrees, such as lightly oxidized compounds from both monoterpene and sesquiterpene oxidations, monoterpene-derived organic nitrates, and monoterpene more oxidized compounds. These factors display similar mass profiles and diurnal variations between the two sites, revealing similar terpene reaction pathways in these forests. With the distinct characteristics of VOCs and oxygenated VOCs measured by the Vocus PTR-TOF, this study identified various primary emission sources and secondary oxidation processes of atmospheric organic vapors in the European pine forests, providing a more comprehensive understanding of gas-phase atmospheric chemistry.


2020 ◽  
Vol 20 (4) ◽  
pp. 1941-1959 ◽  
Author(s):  
Haiyan Li ◽  
Matthieu Riva ◽  
Pekka Rantala ◽  
Liine Heikkinen ◽  
Kaspar Daellenbach ◽  
...  

Abstract. The capabilities of the recently developed Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF) are reported for the first time based on ambient measurements. With the deployment of the Vocus PTR-TOF, we present an overview of the observed gas-phase (oxygenated) molecules in the French Landes forest during summertime 2018 and gain insights into the atmospheric oxidation of terpenes, which are emitted in large quantities in the atmosphere and play important roles in secondary organic aerosol production. Due to the greatly improved detection efficiency compared to conventional PTR instruments, the Vocus PTR-TOF identifies a large number of gas-phase signals with elemental composition categories including CH, CHO, CHN, CHS, CHON, CHOS, and others. Multiple hydrocarbons are detected, with carbon numbers up to 20. Particularly, we report the first direct observations of low-volatility diterpenes in the ambient air. The diurnal cycle of diterpenes is similar to that of monoterpenes and sesquiterpenes but contrary to that of isoprene. Various types of terpene reaction products and intermediates are also characterized. Generally, the more oxidized products from terpene oxidations show a broad peak in the day due to the strong photochemical effects, while the less oxygenated products peak in the early morning and/or in the evening. To evaluate the importance of different formation pathways in terpene chemistry, the reaction rates of terpenes with main oxidants (i.e., hydroxyl radical, OH; ozone, O3; and nitrate radical, NO3) are calculated. For the less oxidized non-nitrate monoterpene oxidation products, their morning and evening peaks have contributions from both O3- and OH-initiated monoterpene oxidation. For the monoterpene-derived organic nitrates, oxidations by O3, OH, and NO3 radicals all contribute to their formation, with their relative roles varying considerably over the course of the day. Through a detailed analysis of terpene chemistry, this study demonstrates the capability of the Vocus PTR-TOF in the detection of a wide range of oxidized reaction products in ambient and remote conditions, which highlights its importance in investigating atmospheric oxidation processes.


2016 ◽  
Author(s):  
Jenni Kontkanen ◽  
Pauli Paasonen ◽  
Juho Aalto ◽  
Jaana Bäck ◽  
Pekka Rantala ◽  
...  

Abstract. The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available in decadal time scales, and the direct measurements of the concentrations of monoterpene oxidation product are so far scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer, and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle with the maximum in summer and the minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environment.


2019 ◽  
Author(s):  
Haiyan Li ◽  
Matthieu Riva ◽  
Pekka Rantala ◽  
Liine Heikkinen ◽  
Kaspar Daellenbach ◽  
...  

Abstract. The capabilities of the recently developed Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF) are reported for the first time based on ambient measurements. With the deployment of the Vocus PTR-TOF, we present an overview of the observed gas-phase (oxygenated) molecules in the French Landes forest during summertime 2018 and gain insights into the atmospheric oxidation of terpenes, which are emitted in large quantities in the atmosphere and play important roles in secondary organic aerosol production. Due to the greatly improved detection efficiency compared to traditional PTR instruments, the Vocus PTR-TOF identifies a large amount of gas-phase signals with elemental composition categories including CH, CHO, CHN, CHS, CHON, CHOS, and others. Multiple hydrocarbons are detected, with carbon numbers up to 20. Particularly, we report the first direct observations of low-volatility diterpenes in the ambient air. The diurnal cycle of diterpenes is similar to that of monoterpenes and sesquiterpenes, but contrary to that of isoprene. Various types of terpene reaction products and intermediates are also characterized. Generally, the more oxidized products from terpene oxidations show a broad peak in the day due to the strong photochemical effects, while the less oxygenated products peak in the early morning and/or in the evening. To evaluate the importance of different formation pathways in terpene chemistry, the reaction rates of terpenes with main oxidants (i.e., hydroxyl radical, OH; ozone, O3; and nitrate radical, NO3) are calculated. For the less oxidized non-nitrate monoterpene oxidation products, their morning peaks likely have contributions from both O3- and OH-initiated monoterpene oxidation. Due to the decreased OH concentration at night, monoterpene ozonolysis becomes more important in the evening. For the monoterpene-derived organic nitrates, oxidations by O3, OH, and NO3 radicals all contribute to their formation, with their relative roles varying considerably over the course of the day. Through a detailed analysis of terpene chemistry, this study demonstrates the capability of the Vocus PTR-TOF in the detection of a wide range of oxidized reaction products in ambient and remote conditions, which highlights its importance in investigating atmospheric oxidation processes.


2016 ◽  
Vol 16 (20) ◽  
pp. 13291-13307 ◽  
Author(s):  
Jenni Kontkanen ◽  
Pauli Paasonen ◽  
Juho Aalto ◽  
Jaana Bäck ◽  
Pekka Rantala ◽  
...  

Abstract. The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.


2012 ◽  
Vol 12 (11) ◽  
pp. 5113-5127 ◽  
Author(s):  
M. Ehn ◽  
E. Kleist ◽  
H. Junninen ◽  
T. Petäjä ◽  
G. Lönn ◽  
...  

Abstract. High molecular weight (300–650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16) oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO3−) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4− (Hyytiälä) and C3F5O2− (JPAC). The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~106–107 molec cm−3). This is in a similar range as the amount of gaseous H2SO4 in Hyytiälä during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and growth may be important and needs to be explored in more detail in the future.


2012 ◽  
Vol 12 (2) ◽  
pp. 4589-4625 ◽  
Author(s):  
M. Ehn ◽  
E. Kleist ◽  
H. Junninen ◽  
T. Petäjä ◽  
G. Lönn ◽  
...  

Abstract. High molecular weight (300–650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night during spring and summer in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16) oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO3−) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4− (Hyytiälä) and C3F5O2− (JPAC). The most abundant products in the ion spectra were identified as C105H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~106–107 molec cm−3). This is in a similar range as the amount of gaseous H2SO4 in Hyytiälä during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and growth may be important and needs to be explored in more detail in the future.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Kang Wang ◽  
Junsoo Han ◽  
Angela Yu Gerard ◽  
John R. Scully ◽  
Bi-Cheng Zhou

AbstractThe potential-pH diagram, a graphical representation of the thermodynamically predominant reaction products in aqueous corrosion, is originally proposed for the corrosion of pure metals. The original approach only leads to stoichiometric oxides and hydroxides as the oxidation products. However, numerous experiments show that non-stoichiometric oxide scales are prevalent in the aqueous corrosion of alloys. In the present study, a room temperature potential-pH diagram considering oxide solid solutions, as a generalization of the traditional potential-pH diagram with stoichiometric oxides, is constructed for an FCC single-phase multi-principal element alloy (MPEA) based on the CALculation of PHAse Diagram method. The predominant reaction products, the ions in aqueous solution, and the cation distribution in oxides are predicted. The oxide solid solution is stabilized by the mixing free energy (or mixing entropy) and the stabilizing effect becomes more significant as the temperature increases. Consequently, solid solution oxides are stable in large regions of the potential-pH diagram and the mixing free energy mostly affects the equilibrium composition of the stable oxides, while the shape of stable regions for oxides is mostly determined by the structure of the stable oxides. Agreements are found for Ni2+, Fe2+, and Mn2+ between the atomic emission spectroelectrochemistry measurements and thermodynamic calculations, while deviations exist for Cr3+ and Co2+ possibly due to surface complexation with species such as Cl− and the oxide dissolution. By incorporating the solution models of oxides, the current work presents a general and more accurate way to analyze the reaction products during aqueous corrosion of MPEAs.


2016 ◽  
Author(s):  
Lubna Dada ◽  
Pauli Paasonen ◽  
Tuomo Nieminen ◽  
Stephany Buenrostro Mazon ◽  
Jenni Kontkanen ◽  
...  

Abstract. New particle formation (NPF) events have been observed all around the world and are known to be a major source of atmospheric aerosol particles. Here we combine 20 years of observations in a boreal forest at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations) in Hyytiälä, Finland, by utilizing previously accumulated knowledge, and by focusing on clear-sky (non-cloudy) conditions. We first investigated the effect of cloudiness on NPF and then compared the NPF event and non-event days during clear-sky conditions. In this comparison we considered, for example, the effects of calculated particle formation rates, condensation sink, trace gas concentrations and various meteorological quantities. The formation rate of 1.5 nm particles was calculated by using proxies for gaseous sulfuric acid and oxidized products of low volatile organic compounds. As expected, our results indicate an increase in the frequency of NPF events under clear-sky conditions. Also, focusing on clearsky conditions enabled us to find a clear separation of many variables related to NPF. For instance, oxidized organic vapors showed higher concentration during the clear-sky NPF event days, whereas the condensation sink (CS) and some trace gases had higher concentrations during the non-event days. The calculated formation rate of 3 nm particles showed a notable difference between the NPF event and non-event days during clear-sky conditions, especially in winter and spring. For spring time, we are able to find a threshold value for the combined values of ambient temperature and CS, above which practically no clear-sky NPF event could be observed. Finally, we present a probability distribution for the frequency of NPF events at a specific CS and temperature.


2019 ◽  
Vol 57 (2) ◽  
pp. 90-100
Author(s):  
Alexey V. Larionov ◽  
◽  
Ludmila Y. Udoeva ◽  
Vladimir M. Chumarev ◽  
◽  
...  

In order to study the effect of yttrium additives on the oxidation of molybdenum silicide alloys, thermodynamic modeling of the interaction in Mo-Mo3Si-Sc5Si3 и Mo-Mo3Si-NdSi systems with dry and moist air was performed in the temperature range 25-2000 °C. The calculations were performed using the HSC Chemistry 6.12 software, into the database of which the calculated missing thermochemical characteristics silicates, molybdates of scandium and neodymium were entered. Based on the obtained dependences of the composition of phases on temperature and charge of the oxidant (air or vapor-air mixture), the sequence of phase formation was determined and the compositions of oxidation products were estimated. It is shown that, under equilibrium conditions, the oxidation process with dry and moist air proceeds almost equally, since the interaction of the components of the alloy with oxygen is thermodynamically preferable than with water vapor. According to the obtained thermodynamic models, the oxidation process of the Mo-5Si-3(Sc, Nd) (wt.%) alloys involves a sequence of the following chemical transformations: at the beginning Mo and Sc (Nd) silicides oxidize forming Sc2O3 ( Nd2O3), SiO2 and elemental Mo, then molybdenum is oxidized to MoO2 and Sc2O3 or Nd2O3 interacts with SiO2 with the formation of appropriate silicates Sc2Si2O7 или Nd2Si2O7. As a result of the complete oxidation of the alloy, MoO3 and Sc2(MoO4)3 or Nd2Mo4O15 are added to the condensed product, and molybdenum oxide (MoO3)n vapor appears in the gas phase. In addition, the formation of Nd2Mo2O7 and Nd2 (MoO4)3 is possible. During the oxidation of the Mo-5Si-3Nd alloy at T> 1700 oC, Nd(OH)3 can be formed in the condensed reaction products. According to the results of complete thermodynamic analysis, the formation of silicates and molybdates of scandium and neodymium can promote to the formation of a protective film on the surface of the alloys, which limits the diffusion of oxygen in them, and as a result, the oxidation resistance of alloys should increase.


Sign in / Sign up

Export Citation Format

Share Document