scholarly journals Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites

2021 ◽  
Vol 21 (10) ◽  
pp. 8273-8292
Author(s):  
Siqi Hou ◽  
Di Liu ◽  
Jingsha Xu ◽  
Tuan V. Vu ◽  
Xuefang Wu ◽  
...  

Abstract. Carbonaceous aerosol is a dominant component of fine particles in Beijing. However, it is challenging to apportion its sources. Here, we applied a newly developed method which combined radiocarbon (14C) with organic tracers to apportion the sources of fine carbonaceous particles at an urban (IAP) and a rural (PG) site of Beijing. PM2.5 filter samples (24 h) were collected at both sites from 10 November to 11 December 2016 and from 22 May to 24 June 2017. 14C was determined in 25 aerosol samples (13 at IAP and 12 at PG) representing low pollution to haze conditions. Biomass burning tracers (levoglucosan, mannosan, and galactosan) in the samples were also determined using gas chromatography–mass spectrometry (GC-MS). Higher contributions of fossil-derived OC (OCf) were found at the urban site. The OCf / OC ratio decreased in the summer samples (IAP: 67.8 ± 4.0 % in winter and 54.2 ± 11.7 % in summer; PG: 59.3 ± 5.7 % in winter and 50.0 ± 9.0 % in summer) due to less consumption of coal in the warm season. A novel extended Gelencsér (EG) method incorporating the 14C and organic tracer data was developed to estimate the fossil and non-fossil sources of primary and secondary OC (POC and SOC). It showed that fossil-derived POC was the largest contributor to OC (35.8 ± 10.5 % and 34.1 ± 8.7 % in wintertime for IAP and PG, 28.9 ± 7.4 % and 29.1 ± 9.4 % in summer), regardless of season. SOC contributed 50.0 ± 12.3 % and 47.2 ± 15.5 % at IAP and 42.0 ± 11.7 % and 43.0 ± 13.4 % at PG in the winter and summer sampling periods, respectively, within which the fossil-derived SOC was predominant and contributed more in winter. The non-fossil fractions of SOC increased in summer due to a larger biogenic component. Concentrations of biomass burning OC (OCbb) are resolved by the extended Gelencsér method, with average contributions (to total OC) of 10.6 ± 1.7 % and 10.4 ± 1.5 % in winter at IAP and PG and 6.5 ± 5.2 % and 17.9 ± 3.5 % in summer, respectively. Correlations of water-insoluble OC (WINSOC) and water-soluble OC (WSOC) with POC and SOC showed that although WINSOC was the major contributor to POC, a non-negligible fraction of WINSOC was found in SOC for both fossil and non-fossil sources, especially during winter. In summer, a greater proportion of WSOC from non-fossil sources was found in SOC. Comparisons of the source apportionment results with those obtained from a chemical mass balance model were generally good, except for the cooking aerosol.

2020 ◽  
Author(s):  
Siqi Hou ◽  
Di Liu ◽  
Jingsha Xu ◽  
Tuan V. Vu ◽  
Xuefang Wu ◽  
...  

Abstract. Carbonaceous aerosol is the dominant component of fine particles in Beijing. However, it is challenging to apportion its sources. Here, we applied a newly developed method which combined radiocarbon (14C) with organic tracers to apportion the sources of fine carbonaceous particles at an urban (IAP) and a rural (PG) site of Beijing. PM2.5 filter samples (24-h) were collected at both sites from 10 November to 11 December 2016 and from 22 May to 24 June 2017. 14C was determined in 25 aerosol samples (13 at IAP and 12 at PG) representing low pollution to haze conditions. Biomass burning tracers (levoglucosan, mannosan and galactosan) in the samples were also determined using GC-MS. Higher contributions of fossil-derived OC (OCf) were found at the urban site. OCf to OC ratio decreased in the summer samples (IAP: 67.8 ± 4.0 % in winter and 54.2 ± 11.7 % in summer; PG: 59.3 ± 5.7 % in winter and 50.0 ± 9.0 % in summer) due to less consumption of coal in the warm season. A novel extended Gelencsér method incorporating the 14C and organic tracer data was developed to estimate the fossil and non-fossil sources of primary and secondary OC (POC and SOC). It showed that fossil-derived POC was the largest contributor to OC (35.8 ± 10.5 % and 34.1 ± 8.7 % in winter time for IAP and PG, 28.9 ± 7.4 % and 28.9 ± 9.6 % in summer), regardless of season. SOC contributed 50.0 ± 12.3 % and 47.2 ± 15.5 % at IAP, and 42.0 ± 11.7 % and 43.0 ± 13.4 % at PG in the winter and summer sampling periods respectively, within which the fossil-derived SOC was predominant and contributed more in winter. The non-fossil fractions of SOC increased in summer due to a larger biogenic component. Concentrations of biomass burning OC (OCbb) are resolved by the extended Gelencsér method with average contributions (to total OC) of 10.6 ± 1.7 % and 10.4 ± 1.5 % in winter at IAP and PG, and 6.5 ± 5.2 % and 17.9 ± 3.5 % in summer, respectively. Correlations of water-insoluble OC (WINSOC), water-soluble OC (WSOC) with POC and SOC showed that although WINSOC was the major contributor to POC, a non-negligible fraction of WINSOC was found in SOC for both fossil and non-fossil sources especially during winter. In summer, a greater proportion of WSOC from non-fossil sources was found in SOC. Comparisons of the source apportionment results with those obtained from a Chemical Mass Balance model were generally good, except for the cooking aerosol.


2021 ◽  
Vol 21 (9) ◽  
pp. 7321-7341
Author(s):  
Jingsha Xu ◽  
Di Liu ◽  
Xuefang Wu ◽  
Tuan V. Vu ◽  
Yanli Zhang ◽  
...  

Abstract. Fine particles were sampled from 9 November to 11 December 2016 and 22 May to 24 June 2017 as part of the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) field campaigns in urban Beijing, China. Inorganic ions, trace elements, organic carbon (OC), elemental carbon (EC), and organic compounds, including biomarkers, hopanes, polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and fatty acids, were determined for source apportionment in this study. Carbonaceous components contributed on average 47.2 % and 35.2 % of total reconstructed PM2.5 during the winter and summer campaigns, respectively. Secondary inorganic ions (sulfate, nitrate, ammonium; SNA) accounted for 35.0 % and 45.2 % of total PM2.5 in winter and summer. Other components including inorganic ions (K+, Na+, Cl−), geological minerals, and trace metals only contributed 13.2 % and 12.4 % of PM2.5 during the winter and summer campaigns. Fine OC was explained by seven primary sources (industrial and residential coal burning, biomass burning, gasoline and diesel vehicles, cooking, and vegetative detritus) based on a chemical mass balance (CMB) receptor model. It explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. Other (unexplained) OC was compared with the secondary OC (SOC) estimated by the EC-tracer method, with correlation coefficients (R2) of 0.58 and 0.73 and slopes of 1.16 and 0.80 in winter and summer, respectively. This suggests that the unexplained OC by the CMB model was mostly associated with SOC. PM2.5 apportioned by the CMB model showed that the SNA and secondary organic matter were the two highest contributors to PM2.5. After these, coal combustion and biomass burning were also significant sources of PM2.5 in winter. The CMB results were also compared with results from the positive matrix factorization (PMF) analysis of co-located aerosol mass spectrometer (AMS) data. The CMB model was found to resolve more primary organic aerosol (OA) sources than AMS-PMF, but the latter could apportion secondary OA sources. The AMS-PMF results for major components, such as coal combustion OC and oxidized OC, correlated well with the results from the CMB model. However, discrepancies and poor agreements were found for other OC sources, such as biomass burning and cooking, some of which were not identified in AMS-PMF factors.


2020 ◽  
Author(s):  
Jingsha Xu ◽  
Di Liu ◽  
Xuefang Wu ◽  
Tuan V. Vu ◽  
Yanli Zhang ◽  
...  

Abstract. Fine particles were sampled from 9th November to 11th December 2016 and 22nd May to 24th June 2017 as part of the Atmospheric Pollution and Human Health in a Chinese megacity (APHH-China) field campaigns in urban Beijing, China. Inorganic ions, trace elements, OC, EC, and organic compounds including biomarkers, hopanes, PAHs, n-alkanes and fatty acids, were determined for source apportionment in this study. Carbonaceous components contributed on average 47.2 % and 35.2 % of total reconstructed PM2.5 during the winter and summer campaigns, respectively. Secondary inorganic ions (sulfate, nitrate, ammonium; SNA) accounted for 35.0 % and 45.2 % of total PM2.5 in winter and summer. Other components including inorganic ions (K+, Na+, Cl−), geological minerals, and trace metals only contributed 13.2 % and 12.4 % of PM2.5 during the winter and summer campaigns. Fine OC was explained by seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) based on a chemical mass balance (CMB) receptor model. It explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. Other (unexplained) OC was compared with the secondary OC (SOC) estimated by the EC-tracer method, with correlation coefficients (R2) of 0.58 and 0.73, and slopes of 1.16 and 0.80 in winter and summer, respectively. This suggests that the unexplained OC by CMB was mostly associated with SOC. PM2.5 apportioned by CMB showed that the SNA and secondary organic matter were the highest two contributors to PM2.5. After these, coal combustion and biomass burning were also significant sources of PM2.5 in winter. The CMB results were also compared with results from Positive Matrix Factorization (PMF) analysis of co-located Aerosol Mass Spectrometer (AMS) data. The CMB was found to resolve more primary OA sources than AMS-PMF but the latter apportioned more secondary OA sources. The AMS-PMF results for major components, such as coal combustion OC and oxidized OC correlated well with the results from CMB. However, discrepancies and poor agreements were found for other OC sources, such as biomass burning and cooking, some of which were not identified in AMS-PMF factors.


2011 ◽  
Vol 11 (8) ◽  
pp. 23573-23618 ◽  
Author(s):  
M. C. Minguillón ◽  
N. Perron ◽  
X. Querol ◽  
S. Szidat ◽  
S. M. Fahrni ◽  
...  

Abstract. We present results from the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during February-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) analysis for elemental and organic carbon (EC and OC) and source apportionment for these data. We combine the results with those from component analysis of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based estimates of biomass burning OC, source apportionment of filter data with inorganic+EC+OC speciation, submicron bulk potassium (K) concentrations, and gaseous acetonitrile concentrations. At BCN, 87 % and 91 % of the EC on average, in winter and summer, respectively, had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to organic carbon (OC) at BCN was 40 % and 48 %, in winter and summer, respectively, and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ~65 % primary whereas at MSY the fossil OC is mainly secondary (~85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorological transport conditions. The estimated biogenic secondary OC at MSY only increased by ~40 % compared to the order-of-magnitude increase observed for biogenic volatile organic compounds (VOCs) between winter and summer, which highlights the uncertainties in the estimation of that component. Biomass burning contributions estimated using the 14C technique ranged from similar to higher than when estimated using other techniques, and the different estimations were highly or moderately correlated. Differences can be explained by the contribution of secondary organic matter (not included in the primary biomass burning source estimates), and/or by an overestimation of the biomass burning OC contribution by the 14C technique if the estimated biomass burning EC/OC ratio used for the calculations is too high for this region. Acetonitrile concentrations correlate well with the biomass burning EC determined by 14C. K is a noisy tracer for biomass burning.


2014 ◽  
Vol 14 (10) ◽  
pp. 15591-15643 ◽  
Author(s):  
P. Zotter ◽  
V. G. Ciobanu ◽  
Y. L. Zhang ◽  
I. El-Haddad ◽  
M. Macchia ◽  
...  

Abstract. While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g. often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C) analyses of the elemental (EC) and organic (OC) carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15%) followed by organic matter OM (30 ± 12%) and EC (5 ± 2%). The non-fossil fractions of OC (fNF,OC) ranged on average from 69–85% and 80–95 % for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~30% to OC. The non-fossil fraction of EC (fNF,EC), entirely attributable to primary biomass burning, was on average 42 ± 13% and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF), which seems to suggest that a considerable amount of OCF is secondary, formed from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+) indicate that biomass burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water-soluble K+ shows different ratios for stations north and south of the Alps, most likely because of differences in burning technologies, for these two regions in Switzerland.


2011 ◽  
Vol 11 (23) ◽  
pp. 12067-12084 ◽  
Author(s):  
M. C. Minguillón ◽  
N. Perron ◽  
X. Querol ◽  
S. Szidat ◽  
S. M. Fahrni ◽  
...  

Abstract. We present results from the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during February–March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) analysis for elemental and organic carbon (EC and OC) and source apportionment for these data. We combine the results with those from component analysis of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based estimates of biomass burning OC, source apportionment of filter data with inorganic composition + EC + OC, submicron bulk potassium (K) concentrations, and gaseous acetonitrile concentrations. At BCN, 87 % and 91 % of the EC on average, in winter and summer, respectively, had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to organic carbon (OC) at BCN was 40 % and 48 %, in winter and summer, respectively, and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorological transport conditions. The estimated biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase observed for biogenic volatile organic compounds (VOCs) between winter and summer, which highlights the uncertainties in the estimation of that component. Biomass burning contributions estimated using the 14C technique ranged from similar to slightly higher than when estimated using other techniques, and the different estimations were highly or moderately correlated. Differences can be explained by the contribution of secondary organic matter (not included in the primary biomass burning source estimates), and/or by an overestimation of the biomass burning OC contribution by the 14C technique if the estimated biomass burning EC/OC ratio used for the calculations is too high for this region. Acetonitrile concentrations correlate well with the biomass burning EC determined by 14C. K is a noisy tracer for biomass burning.


2012 ◽  
Vol 12 (22) ◽  
pp. 10841-10856 ◽  
Author(s):  
Y. L. Zhang ◽  
N. Perron ◽  
V. G. Ciobanu ◽  
P. Zotter ◽  
M. C. Minguillón ◽  
...  

Abstract. Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4) S4 in O2 at 760 °C for recovery of the remaining EC. WINSOC was found to have a significantly higher fossil contribution than the water-soluble OC (WSOC). Moreover, the experimental results demonstrate the lower refractivity of wood-burning EC compared to fossil EC and the difficulty of clearly isolating EC without premature evolution. Hence, simplified techniques of EC isolation for 14C analysis are prone to a substantial bias and generally tend towards an overestimation of fossil sources. To obtain the comprehensive picture of the sources of carbonaceous aerosols, the Swiss_4S protocol is not only implemented to measure OC and EC fractions, but also WINSOC as well as a continuum of refractory OC and non-refractory EC for 14C source apportionment. In addition, WSOC can be determined by subtraction of the water-soluble fraction of TC from untreated TC. Last, we recommend that 14C results of EC should in general be reported together with the EC recovery.


2014 ◽  
Vol 14 (19) ◽  
pp. 26257-26296 ◽  
Author(s):  
Y.-L. Zhang ◽  
R.-J. Huang ◽  
I. El Haddad ◽  
K.-F. Ho ◽  
J.-J. Cao ◽  
...  

Abstract. During winter 2013, extremely high concentrations (i.e. 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) were reported in several large cities in China. In this work, source apportionment of fine carbonaceous aerosols during this haze episode was conducted at four major cities in China including Xian, Beijing, Shanghai and Guangzhou. An effective statistical analysis of a combined dataset from elemental carbon (EC) and organic carbon (OC), radiocarbon (14C) and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xian (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately with heavily polluted days according to particulate matter mass. Despite a significant increase of absolute mass concentrations of primary emissions from both, fossil and non-fossil sources, during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.


2012 ◽  
Vol 12 (7) ◽  
pp. 17657-17702 ◽  
Author(s):  
Y. L. Zhang ◽  
N. Perron ◽  
V. G. Ciobanu ◽  
P. Zotter ◽  
M. C. Minguillón ◽  
...  

Abstract. Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters, and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C, followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4) S4 in O2 at 760 °C for recovery of the remaining EC. WINSOC was found to have a significantly higher fossil contribution than the water-soluble OC (WSOC). Moreover, the experimental results demonstrate the lower refractivity of wood-burning EC compared to fossil EC and the difficulty of clearly isolating EC without premature evolution. Hence, simplified techniques of EC isolation for 14C analysis are prone to a substantial bias and generally tend towards an underestimation of the non-fossil sources. Consequently, the optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions differ in their origins. To obtain the comprehensive picture of the sources of carbonaceous aerosols, the Swiss_4S protocol is not only implemented to measure OC and EC fractions, but also WINSOC as well as a continuum of refractory OC and non-refractory EC for 14C source apportionment. In addition, WSOC can be determined by subtraction of the water-soluble fraction of TC from untreated TC. Last, we recommend that 14C results of EC should in general be reported together with the EC recovery.


2015 ◽  
Vol 15 (23) ◽  
pp. 34949-34979 ◽  
Author(s):  
J. Liu ◽  
J. Li ◽  
D. Liu ◽  
P. Ding ◽  
C. Shen ◽  
...  

Abstract. Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities of China, yet seldom study simultaneously focuses on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), respectively, using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 % in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 % in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom–decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.


Sign in / Sign up

Export Citation Format

Share Document