scholarly journals Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process

2021 ◽  
Vol 21 (12) ◽  
pp. 9741-9760
Author(s):  
Georgia Sotiropoulou ◽  
Luisa Ickes ◽  
Athanasios Nenes ◽  
Annica M. L. Ekman

Abstract. Atmospheric models often fail to correctly reproduce the microphysical structure of Arctic mixed-phase clouds and underpredict ice water content even when the simulations are constrained by observed levels of ice nucleating particles. In this study we investigate whether ice multiplication from breakup upon ice–ice collisions, a process missing in most models, can account for the observed cloud ice in a stratocumulus cloud observed during the Arctic Summer Cloud Ocean Study (ASCOS) campaign. Our results indicate that the efficiency of this process in these conditions is weak; increases in fragment generation are compensated for by subsequent enhancement of precipitation and subcloud sublimation. Activation of collisional breakup improves the representation of cloud ice content, but cloud liquid remains overestimated. In most sensitivity simulations, variations in ice habit and prescribed rimed fraction have little effect on the results. A few simulations result in explosive multiplication and cloud dissipation; however, in most setups, the overall multiplication effects become substantially weaker if the precipitation sink is enhanced through cloud-ice-to-snow autoconversion. The largest uncertainty stems from the correction factor for ice enhancement due to sublimation included in the breakup parameterization; excluding this correction results in rapid glaciation, especially in simulations with plates. Our results indicate that the lack of a detailed treatment of ice habit and rimed fraction in most bulk microphysics schemes is not detrimental for the description of the collisional breakup process in the examined conditions as long as cloud-ice-to-snow autoconversion is considered.

2020 ◽  
Author(s):  
Georgia Sotiropoulou ◽  
Luisa Ickes ◽  
Athanasios Nenes ◽  
Annica M. L. Ekman

Abstract. Atmospheric models often fail to correctly reproduce the microphysical structure of Arctic mixed-phase clouds and underpredict ice water content, even when simulations are constrained by the observed levels of ice nucleating particles. In this study we investigate whether ice multiplication from ice-ice collisions, a process missing in most models, can account for the observed cloud ice in a stratocumulus cloud observed during the Arctic Summer Cloud Study campaign. Our results indicate that including ice-ice collisions can improve the modeled cloud water properties, but the degree of influence depends on other poorly constrained microphysical aspects that include ice habit, rimed fraction and cloud ice-to-snow autoconversion rate. Simulations with dendrites are less sensitive to variations in the assumed rimed fraction of the particle that undergoes break-up, compared to those with planar ice. Activating cloud ice-to-snow autoconversion decreases the sensitivity of the break-up process to both the assumed ice habit and rimed fraction. Finally, adapting a relatively small value for the threshold diameter at which cloud ice is converted to snow enhances break-up efficiency and improves the macrophysical representation of the cloud.


2017 ◽  
Vol 10 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Martina Buiat ◽  
Federico Porcù ◽  
Stefano Dietrich

Abstract. Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.


2016 ◽  
Author(s):  
Martina Buiat ◽  
Federico Porcù ◽  
Stefano Dietrich

Abstract. Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles, ice content and relate them to the lightning activity. The analysis has been carried out focusing on five convective events occurred over Italy that have crossed by CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud Ice Water Content (IWC) and ice particles Effective Radius (ER), to be compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the numbers of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud top IWC peaks and relatively high profile-averaged RE seems to be favourable to produce strokes.


2008 ◽  
Vol 47 (9) ◽  
pp. 2487-2495 ◽  
Author(s):  
Lawrence D. Carey ◽  
Jianguo Niu ◽  
Ping Yang ◽  
J. Adam Kankiewicz ◽  
Vincent E. Larson ◽  
...  

Abstract The microphysical properties of mixed-phase altocumulus clouds are investigated using in situ airborne measurements acquired during the ninth Cloud Layer Experiment (CLEX-9) over a midlatitude location. Approximately ⅔ of the sampled profiles are supercooled liquid–topped altocumulus clouds characterized by mixed-phase conditions. The coexistence of measurable liquid water droplets and ice crystals begins at or within tens of meters of cloud top and extends down to cloud base. Ice virga is found below cloud base. Peak liquid water contents occur at or near cloud top while peak ice water contents occur in the lower half of the cloud or in virga. The estimation of ice water content from particle size data requires that an assumption be made regarding the particle mass–dimensional relation, resulting in potential error on the order of tens of percent. The highest proportion of liquid is typically found in the coldest (top) part of the cloud profile. This feature of the microphysical structure for the midlatitude mixed-phase altocumulus clouds is similar to that reported for mixed-phase clouds over the Arctic region. The results obtained for limited cases of midlatitude mixed-phase clouds observed during CLEX-9 may have an implication for the study of mixed-phase cloud microphysics, satellite remote sensing applications, and the parameterization of mixed-phase cloud radiative properties in climate models.


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 401-418 ◽  
Author(s):  
Q. Gao ◽  
C. Leck ◽  
C. Rauschenberg ◽  
P. A. Matrai

Abstract. The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.


2016 ◽  
Vol 16 (10) ◽  
pp. 6091-6105 ◽  
Author(s):  
Steven T. Massie ◽  
Julien Delanoë ◽  
Charles G. Bardeen ◽  
Jonathan H. Jiang ◽  
Lei Huang

Abstract. Changes in the shape of cloud ice water content (IWC) vertical structure due to variations in Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depths (AODs), Ozone Monitoring Instrument (OMI) absorptive aerosol optical depths (AAODs), and Microwave Limb Sounder (MLS) CO (an absorptive aerosol proxy) at 215 hPa are calculated in the Tropics during 2007–2010 based upon an analysis of DARDAR IWC profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Analysis is performed for 12 separate regions over land and ocean, and carried out applying MODIS AOD fields that attempt to correct for 3-D cloud adjacency effects. The 3-D cloud adjacency effects have a small impact upon our particular calculations of aerosol–cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude. Similar analyses are carried out for three AAOD and three CO bins. On average, the vertical profiles of the means of the derivatives based upon the profile shapes over land and ocean are smaller for the profiles binned according to AAOD and CO values, than for the MODIS AODs, which include both scattering and absorptive aerosol. This difference in character supports the assertion that absorptive aerosol can inhibit cloud development.


2016 ◽  
Author(s):  
Steven T. Massie ◽  
Julien Delanoe ◽  
Charles G. Bardeen

Abstract. Changes in the shape of cloud ice water content vertical structure due to aerosol variations are calculated in the Tropics during 2007–2010 based upon an analysis of DARDAR ice water content (IWC) profiles for deep convective clouds. DARDAR profiles are a joint retrieval of CloudSat-CALIPSO data. Our analysis is performed for 12 separate regions over land and ocean, and carried out applying Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) fields that attempt to correct for 3D cloud adjacency effects. The 3D cloud adjacency effects have a small impact upon our calculations of aerosol-cloud indirect effects. IWC profiles are averaged for three AOD bins individually for the 12 regions. The IWC average profiles are also normalized to unity at 5 km altitude in order to study changes in the shape of the average IWC profiles as AOD increases. Derivatives of the IWC average profiles, and derivatives of the IWC shape profiles, in percent change per 0.1 change in MODIS AOD units, are calculated separately for each region. Means of altitude-specific probability distribution functions, which include both ocean and land IWC shape regional derivatives, are modest, near 5 %, and positive to the 2σ level between 11 and 15 km altitude.


2014 ◽  
Vol 53 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Dong L. Wu ◽  
Alyn Lambert ◽  
William G. Read ◽  
Patrick Eriksson ◽  
Jie Gong

AbstractThis study examines the consistency and microphysics assumptions among satellite ice water content (IWC) retrievals in the upper troposphere with collocated A-Train radiances from Microwave Limb Sounder (MLS) and lidar backscatters from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). For the cases in which IWC values are small (<10 mg m−3), the cloud ice retrievals are constrained by both MLS 240- and 640-GHz radiances and CALIOP 532-nm backscatter β532. From the observed relationships between MLS cloud-induced radiance Tcir and the CALIOP backscatter integrated γ532 along the MLS line of sight, an empirical linear relation between cloud ice and the lidar backscatter is found: IWC/β532 = 0.58 ± 0.11. This lidar cloud ice relation is required to satisfy the cloud ice emission signals simultaneously observed at microwave frequencies, in which ice permittivity is relatively well known. This empirical relationship also produces IWC values that agree well with the CALIOP, version 3.0, retrieval at values <10 mg m−3. Because the microphysics assumption is critical in satellite cloud ice retrievals, the agreement found in the IWC–β532 relationships increase fidelity of the assumptions used by the lidar and microwave techniques for upper-tropospheric clouds.


Abstract The ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes (OAP) and remote sensing measurements and provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and close-to-zero bias. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity (Ze) and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with the same Ze have a lower IWC than aggregates, whose Ze-IWC relation is more consistent with the observed WCR Ze and in-situ IWC relation in those clouds. The 2DS images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds, hence the retrieved IWC assuming modified Gamma PSD of aggregate particles tends to be biased larger in this kind of clouds.


2012 ◽  
Vol 39 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Melody Avery ◽  
David Winker ◽  
Andrew Heymsfield ◽  
Mark Vaughan ◽  
Stuart Young ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document