scholarly journals Global satellite validation of SCIAMACHY O<sub>3</sub> columns with GOME WFDOAS

2005 ◽  
Vol 5 (9) ◽  
pp. 2357-2368 ◽  
Author(s):  
A. Bracher ◽  
L. N. Lamsal ◽  
M. Weber ◽  
K. Bramstedt ◽  
M. Coldewey-Egbers ◽  
...  

Abstract. Global stratospheric ozone columns derived from UV nadir spectra measured by SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography; data ESA Versions 5.01 and 5.04) aboard the recently launched Environmental Satellite (ENVISAT) from January to June 2003 were compared to collocated total ozone data from GOME (Global Ozone Monitoring Experiment on ERS-2) retrieved using the weighting function DOAS algorithm (WFDOAS; Version 1.0) in order to assess the level-2 data (trace gas data) retrieval accuracy from SCIAMACHY. In addition, SCIAMACHY ozone columns retrieved with WFDOAS V1.0 were compared to GOME WFDOAS for some selected days in 2003 in order to separate data quality issues that either come from the optical performance of the instrument or algorithm implementation. Large numbers of collocated total ozone data from the two instruments, which are flying in the same orbit about 30 min apart, were spatially binned into regular 2.5° times 2.5° grids and then compared. Results of these satellite comparisons show that SCIAMACHY O3 vertical columns (ESA Version 5.01/5.04) are on average 1% (±2%) lower than GOME WFDOAS and scatter increases at solar zenith angles above 85° and at very low total ozone values. Results show dependencies on the solar zenith angle, latitudes, and total ozone amounts which are explained by the implementation of an outdated GOME algorithm based on GOME Data Processor (GDP) version 2.4 algorithms for the SCIAMACHY operational product. The reprocessing with an algorithm equivalent to GOME WFDOAS V1.0 shows that the offset and dependencies on solar zenith angle, latitude, and total ozone disappear and that SCIAMACHY WFDOAS data are within 1% of GOME WFDOAS. Since GOME lost its global coverage in July 2003 due to data rate limitation, continuation of the total ozone time series with SCIAMACHY is of highest importance for long-term trend monitoring. Since the beginning of its operation in March 2002 the SCIAMACHY instrument has performed stable. With the application of proper algorithms to retrieve total ozone, SCIAMACHY will be able to contribute to the global long term satellite total ozone record and it has the potential to achieve the high accuracy of GOME total ozone.

2005 ◽  
Vol 5 (1) ◽  
pp. 795-813
Author(s):  
A. Bracher ◽  
M. Weber ◽  
K. Bramstedt ◽  
M. Coldewey-Egbers ◽  
L. N. Lamsal ◽  
...  

Abstract. Global stratospheric ozone columns measured by SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography; data versions 5.01 and 5.04) aboard the recently launched Environmental Satellite (ENVISAT) from January to June 2003 were compared to collocated total ozone data from GOME (Global Ozone Monitoring Experiment on ERS-2) retrieved using the weighting function DOAS algorithm (WFDOAS; Version 1.0) in order to assess the level-2 data (trace gas data) retrieval accuracy from SCIAMACHY. The large number of collocated total ozone data from the two instruments which are flying in the same orbit were spatially binned into regular 2.5° and 2.5° grids and then compared. This binning method shows similar results than direct comparisons but is about thousand times faster. Results of these satellite comparisons show that SCIAMACHY O3 vertical columns (version 5.01/5.04) are on average 1% (±2%) lower than GOME WFDOAS and scatter increases at solar zenith angles above 85° and at low total ozone values. Results show dependencies on the seasonal cycle, latitudes, and total ozone amounts which are explained by the implementation of an old GOME algorithm based on GOME Data Processor (GDP) version 2.4 algorithm for the SCIAMACHY operational product. A reprocessing with an algorithm equivalent to GOME GDP version 4.0 and/or GOME WFDOAS V1.0 will improve significantly the quality of the SCIAMACHY ozone product. Since GOME lost its global coverage in July 2003 due to data rate limitation, continuation of the total ozone time series with SCIAMACHY is of highest importance for long-term trend monitoring.


2005 ◽  
Vol 5 (2) ◽  
pp. 393-408 ◽  
Author(s):  
A. Bracher ◽  
M. Sinnhuber ◽  
A. Rozanov ◽  
J. P. Burrows

Abstract. SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography) aboard the recently launched Environmental Satellite (ENVISAT) of ESA is measuring solar radiance upwelling from the atmosphere and the extraterrestrial irradiance. Appropriate inversion of the ultraviolet and visible radiance measurements, observed from the atmospheric limb, yields profiles of nitrogen dioxide, NO2, in the stratosphere (SCIAMACHY-IUP NO2 profiles V1). In order to assess their accuracy, the resulting NO2 profiles have been compared with those retrieved from the space borne occultation instruments Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.2). As the HALOE and SAGE II measurements are performed during local sunrise or sunset and because NO2 has a significant diurnal variability, the NO2 profiles derived from HALOE and SAGE II have been transformed to those predicted for the solar zenith angles of the SCIAMACHY measurement by using a 1-dimensional photochemical model. The model used to facilitate the comparison of the NO2 profiles from the different satellite sensors is described and a sensitivity ananlysis provided. Comparisons between NO2 profiles from SCIAMACHY and those from HALOE NO2 but transformed to the SCIAMACHY solar zenith angle, for collocations from July to October 2002, show good agreement (within +/-12%) between the altitude range from 22 to 33km. The results from the comparison of all collocated NO2 profiles from SCIAMACHY and those from SAGE II transformed to the SCIAMACHY solar zenith angle show a systematic negative bias of 10 to 35% between 20km to 38km with a small standard deviation between 5 to 14%. These results agree with those of Newchurch and Ayoub (2004), implying that above 20km NO2 profiles from SAGE II sunset are probably somewhat high.


2004 ◽  
Vol 4 (5) ◽  
pp. 5515-5548 ◽  
Author(s):  
A. Bracher ◽  
M. Sinnhuber ◽  
A. Rozanov ◽  
J. P. Burrows

Abstract. SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography) aboard the recently launched Environmental Satellite (ENVISAT) of ESA is measuring solar radiance upwelling from the atmosphere and the extraterrestrial irradiance. Appropriate inversion of the ultraviolet and visible radiance measurements, observed from the atmospheric limb, yields profiles of nitrogen dioxide, NO2, in the stratosphere. In order to assess their accuracy, the resulting NO2 profiles have been compared with those retrieved from the space borne occultation instruments Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.20). As the HALOE and SAGE II measurements are performed during local sunrise or sunset and because NO2 has a significant diurnal variability, the NO2 profiles derived from HALOE and SAGE II have been transformed to those predicted for the solar zenith angles of the SCIAMACHY measurement by using a 1-D photochemical model. The model used to facilitate the comparison of the NO2 profiles from the different satellite sensors is described and an error assessment provided. Comparisons between NO2 profiles from SCIAMACHY and those from HALOE NO2 but transformed to the SCIAMACHY solar zenith angle, for collocations from July to October 2002, show good agreement (within +/−15%) between the altitude range from 22 to 33 km. The results from the comparison of all collocated NO2 profiles from SCIAMACHY and those from SAGE II transformed to the SCIAMACHY solar zenith angle show a systematic negative bias of 10 to 35% between 20 km to 38 km with a small standard deviation between 5 to 14%. These results agree with those of Newchurch and Ayoub (2004), implying that above 20 km NO2 profiles from SAGE II sunset are probably somewhat high.


2008 ◽  
Vol 8 (11) ◽  
pp. 2847-2857 ◽  
Author(s):  
J. W. Krzyścin ◽  
J. L. Borkowski

Abstract. The total ozone data over Europe are available for only few ground-based stations in the pre-satellite era disallowing examination of the spatial trend variability over the whole continent. A need of having gridded ozone data for a trend analysis and input to radiative transfer models stimulated a reconstruction of the daily ozone values since January 1950. Description of the reconstruction model and its validation were a subject of our previous paper. The data base used was built within the objectives of the COST action 726 "Long-term changes and climatology of UV radiation over Europe". Here we focus on trend analyses. The long-term variability of total ozone is discussed using results of a flexible trend model applied to the reconstructed total ozone data for the period 1950–2004. The trend pattern, which comprises both anthropogenic and "natural" component, is not a priori assumed but it comes from a smooth curve fit to the zonal monthly means and monthly grid values. The ozone long-term changes are calculated separately for cold (October–next year April) and warm (May–September) seasons. The confidence intervals for the estimated ozone changes are derived by the block bootstrapping. The statistically significant negative trends are found almost over the whole Europe only in the period 1985–1994. Negative trends up to −3% per decade appeared over small areas in earlier periods when the anthropogenic forcing on the ozone layer was weak . The statistically positive trends are found only during warm seasons 1995–2004 over Svalbard archipelago. The reduction of ozone level in 2004 relative to that before the satellite era is not dramatic, i.e., up to ~−5% and ~−3.5% in the cold and warm subperiod, respectively. Present ozone level is still depleted over many popular resorts in southern Europe and northern Africa. For high latitude regions the trend overturning could be inferred in last decade (1995–2004) as the ozone depleted areas are not found there in 2004 in spite of substantial ozone depletion in the period 1985–1994.


2019 ◽  
Vol 12 (2) ◽  
pp. 987-1011
Author(s):  
Kostas Eleftheratos ◽  
Christos S. Zerefos ◽  
Dimitris S. Balis ◽  
Maria-Elissavet Koukouli ◽  
John Kapsomenakis ◽  
...  

Abstract. In this work we present evidence that quasi-cyclical perturbations in total ozone (quasi-biennial oscillation – QBO, El Niño–Southern Oscillation – ENSO, and North Atlantic Oscillation – NAO) can be used as independent proxies in evaluating Global Ozone Monitoring Experiment (GOME) 2 aboard MetOp A (GOME-2A) satellite total ozone data, using ground-based (GB) measurements, other satellite data, and chemical transport model calculations. The analysis is performed in the frame of the validation strategy on longer time scales within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Atmospheric Composition Monitoring (AC SAF) project, covering the period 2007–2016. Comparison of GOME-2A total ozone with ground observations shows mean differences of about -0.7±1.4 % in the tropics (0–30∘), about +0.1±2.1 % in the mid-latitudes (30–60∘), and about +2.5±3.2 % and 0.0±4.3 % over the northern and southern high latitudes (60–80∘), respectively. In general, we find that GOME-2A total ozone data depict the QBO–ENSO–NAO natural fluctuations in concurrence with the co-located solar backscatter ultraviolet radiometer (SBUV), GOME-type Total Ozone Essential Climate Variable (GTO-ECV; composed of total ozone observations from GOME, SCIAMACHY – SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY, GOME-2A, and OMI – ozone monitoring instrument, combined into one homogeneous time series), and ground-based observations. Total ozone from GOME-2A is well correlated with the QBO (highest correlation in the tropics of +0.8) in agreement with SBUV, GTO-ECV, and GB data which also give the highest correlation in the tropics. The differences between deseazonalized GOME-2A and GB total ozone in the tropics are within ±1 %. These differences were tested further as to their correlations with the QBO. The differences had practically no QBO signal, providing an independent test of the stability of the long-term variability of the satellite data. Correlations between GOME-2A total ozone and the Southern Oscillation Index (SOI) were studied over the tropical Pacific Ocean after removing seasonal, QBO, and solar-cycle-related variability. Correlations between ozone and the SOI are on the order of +0.5, consistent with SBUV and GB observations. Differences between GOME-2A and GB measurements at the station of Samoa (American Samoa; 14.25∘ S, 170.6∘ W) are within ±1.9 %. We also studied the impact of the NAO on total ozone in the northern mid-latitudes in winter. We find very good agreement between GOME-2A and GB observations over Canada and Europe as to their NAO-related variability, with mean differences reaching the ±1 % levels. The agreement and small differences which were found between the independently produced total ozone datasets as to the influence of the QBO, ENSO, and NAO show the importance of these climatological proxies as additional tool for monitoring the long-term stability of satellite–ground-truth biases.


2019 ◽  
Vol 12 (1) ◽  
pp. 327-343 ◽  
Author(s):  
Omid Moeini ◽  
Zahra Vaziri Zanjani ◽  
C. Thomas McElroy ◽  
David W. Tarasick ◽  
Robert D. Evans ◽  
...  

Abstract. Dobson and Brewer spectrophotometers are the primary, standard instruments for ground-based ozone measurements under the World Meteorological Organization's (WMO) Global Atmosphere Watch program. The accuracy of the data retrieval for both instruments depends on a knowledge of the ozone absorption coefficients and some assumptions underlying the data analysis. Instrumental stray light causes nonlinearity in the response of both the Brewer and Dobson to ozone at large ozone slant paths. In addition, it affects the effective ozone absorption coefficients and extraterrestrial constants that are both instrument-dependent. This effect has not been taken into account in the calculation of ozone absorption coefficients that are currently recommended by WMO for the Dobson network. The ozone absorption coefficients are calculated for each Brewer instrument individually, but in the current procedure the effect of stray light is not considered. This study documents the error caused by the effect of stray light in the Brewer and Dobson total ozone measurements using a physical model for each instrument. For the first time, new ozone absorption coefficients are calculated for the Brewer and Dobson instruments, taking into account the stray light effect. The analyses show that the differences detected between the total ozone amounts deduced from Dobson AD and CD pair wavelengths are related to the level of stray light within the instrument. The discrepancy introduced by the assumption of a fixed height for the ozone layer for ozone measurements at high latitude sites is also evaluated. The ozone data collected by two Dobson instruments during the period of December 2008 to December 2014 are compared with ozone data from a collocated double monochromator Brewer spectrophotometer (Mark III). The results illustrate the dependence of Dobson AD and CD pair measurements on stray light.


2012 ◽  
Vol 5 (9) ◽  
pp. 2169-2181 ◽  
Author(s):  
M. E. Koukouli ◽  
D. S. Balis ◽  
D. Loyola ◽  
P. Valks ◽  
W. Zimmer ◽  
...  

Abstract. The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011), Ozone Monitoring Experiment [OMI] (since 2004) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002) total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3) data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3) data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.


2020 ◽  
Author(s):  
Clark Weaver ◽  
Gordon Labow ◽  
Dong Wu ◽  
Pawan K. Bhartia ◽  
David Haffner

&lt;p&gt;A suite of NASA/NOAA UV (340nm) sensing satellite instruments, starting with Nimbus-7 SBUV in 1980, provides a global long-term record of cloud trends and cloud response from ENSO events. We present new method to inter-calibrate the radiances of all the SBUV instruments and the Suomi NPP OMPS mapper over both the East Antarctic Plateau and Greenland ice sheets during summer. First, the strong solar zenith angle dependence from the intensities are removed using an empirical approach rather than a radiative transfer model. Then small multiplicative adjustments are made to these solar zenith angle normalized intensities in order to minimize differences when two or more instruments temporally overlap. While the calibrated intensities show a negligible long-term trend over Antarctica, and a statistically insignificant UV albedo trend of -0.05 % per decade over the interior of Greenland, there are small episodic reductions in&amp;#160;intensities which are often seen by multiple instruments. Three of these darkening events are explained by boreal forest fires using trajectory modeling analysis. Other events are caused by surface melting or volcanoes. We estimate a 2-sigma uncertainty&amp;#160;of 0.35% for the calibrated radiances. Finally, we connect the estimated radiance uncertainties, derived from our calibration approach, to the tropical and midlatitude UV cloud albedo trends.&lt;/p&gt;


2010 ◽  
Vol 10 (5) ◽  
pp. 2539-2549 ◽  
Author(s):  
X. Liu ◽  
P. K. Bhartia ◽  
K. Chance ◽  
L. Froidevaux ◽  
R. J. D. Spurr ◽  
...  

Abstract. We validate OMI ozone profiles between 0.22–215 hPa and stratospheric ozone columns down to 215 hPa (SOC215) against v2.2 MLS data from 2006. The validation demonstrates convincingly that SOC can be derived accurately from OMI data alone, with errors comparable to or smaller than those from current MLS retrievals, and it demonstrates implicitly that tropospheric ozone column can be retrieved accurately from OMI or similar nadir-viewing ultraviolet measurements alone. The global mean biases are within 2.5% above 100 hPa and 5–10% below 100 hPa; the standard deviations of the differences (1σ) are 3.5–5% between 1–50 hPa, 6–9% above 1 hPa and 8–15% below 50 hPa. OMI shows some latitude and solar zenith angle dependent biases, but the mean biases are mostly within 5% and the standard deviations are mostly within 2–5% except for low altitudes and high latitudes. The excellent agreement with MLS data shows that OMI retrievals can be used to augment the validation of MLS and other stratospheric ozone measurements made with even higher vertical resolution than that for OMI. OMI SOC215 shows a small bias of −0.6% with a standard deviation of 2.8%. When compared as a function of latitude and solar zenith angle, the mean biases are within 2% and the standard deviations range from 2.1 to 3.4%. Assuming 2% precision for MLS SOC215, we deduce that the upper limits of random-noise and smoothing errors for OMI SOC215 range from 0.6% in the southern tropics to 2.8% at northern middle latitudes.


2012 ◽  
Vol 4 (1) ◽  
pp. 91-100 ◽  
Author(s):  
K. Vaníček ◽  
L. Metelka ◽  
P. Skřivánková ◽  
M. Staněk

Abstract. Homogenized data series of total ozone measurements taken by the regularly and well calibrated Dobson and Brewer spectrophotometers at Hradec Králové (Czech) and the data from the re-analyses ERA-40 and ERA-Interim were merged and compared to investigate differences between the particular data sets originated in Central Europe, the Northern Hemisphere (NH) mid-latitudes. The Dobson-to-Brewer transfer function and the algorithm for approximation of the data from the re-analyses were developed, tested and applied for creation of instrumentally consistent and completed total ozone data series of the 50-yr period 1961–2010 of observations. This correction has reduced the well-known seasonal differences between Dobson and Brewer data below the 1% calibration limit of the spectrophotometers. Incorporation of the ERA-40 and ERA-Interim total ozone data on days with missing measurements significantly improved completeness and reliability of the data series mainly in the first two decades of the period concerned. Consistent behaviour of the original and corrected/merged data sets was found in the pre-ozone-hole period (1961–1985). In the post-Pinatubo (1994–2010) era the data series show seasonal differences that can introduce uncertainty in estimation of ozone recovery mainly in the winter-spring season when the effect of the Montreal Protocol and its Amendments is expected. All the data sets confirm substantial depletion of ozone also in the summer months that gives rise to the question about its origin. The merged and completed data series of total ozone will be further analyzed to quantify chemical ozone losses and contribution of natural atmospheric processes to the ozone depletion over the region. This case study points out the importance of selection and evaluation of the quality and consistency of the input data sets used in estimation of long-term ozone changes including recovery of the ozone layer over the selected areas. Data are available from the PANGAEA database at doi:10.1594/PANGAEA.779819.


Sign in / Sign up

Export Citation Format

Share Document