scholarly journals Using a photochemical model for the validation of NO<sub>2</sub> satellite measurements at different solar zenith angles

2005 ◽  
Vol 5 (2) ◽  
pp. 393-408 ◽  
Author(s):  
A. Bracher ◽  
M. Sinnhuber ◽  
A. Rozanov ◽  
J. P. Burrows

Abstract. SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography) aboard the recently launched Environmental Satellite (ENVISAT) of ESA is measuring solar radiance upwelling from the atmosphere and the extraterrestrial irradiance. Appropriate inversion of the ultraviolet and visible radiance measurements, observed from the atmospheric limb, yields profiles of nitrogen dioxide, NO2, in the stratosphere (SCIAMACHY-IUP NO2 profiles V1). In order to assess their accuracy, the resulting NO2 profiles have been compared with those retrieved from the space borne occultation instruments Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.2). As the HALOE and SAGE II measurements are performed during local sunrise or sunset and because NO2 has a significant diurnal variability, the NO2 profiles derived from HALOE and SAGE II have been transformed to those predicted for the solar zenith angles of the SCIAMACHY measurement by using a 1-dimensional photochemical model. The model used to facilitate the comparison of the NO2 profiles from the different satellite sensors is described and a sensitivity ananlysis provided. Comparisons between NO2 profiles from SCIAMACHY and those from HALOE NO2 but transformed to the SCIAMACHY solar zenith angle, for collocations from July to October 2002, show good agreement (within +/-12%) between the altitude range from 22 to 33km. The results from the comparison of all collocated NO2 profiles from SCIAMACHY and those from SAGE II transformed to the SCIAMACHY solar zenith angle show a systematic negative bias of 10 to 35% between 20km to 38km with a small standard deviation between 5 to 14%. These results agree with those of Newchurch and Ayoub (2004), implying that above 20km NO2 profiles from SAGE II sunset are probably somewhat high.


2004 ◽  
Vol 4 (5) ◽  
pp. 5515-5548 ◽  
Author(s):  
A. Bracher ◽  
M. Sinnhuber ◽  
A. Rozanov ◽  
J. P. Burrows

Abstract. SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography) aboard the recently launched Environmental Satellite (ENVISAT) of ESA is measuring solar radiance upwelling from the atmosphere and the extraterrestrial irradiance. Appropriate inversion of the ultraviolet and visible radiance measurements, observed from the atmospheric limb, yields profiles of nitrogen dioxide, NO2, in the stratosphere. In order to assess their accuracy, the resulting NO2 profiles have been compared with those retrieved from the space borne occultation instruments Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.20). As the HALOE and SAGE II measurements are performed during local sunrise or sunset and because NO2 has a significant diurnal variability, the NO2 profiles derived from HALOE and SAGE II have been transformed to those predicted for the solar zenith angles of the SCIAMACHY measurement by using a 1-D photochemical model. The model used to facilitate the comparison of the NO2 profiles from the different satellite sensors is described and an error assessment provided. Comparisons between NO2 profiles from SCIAMACHY and those from HALOE NO2 but transformed to the SCIAMACHY solar zenith angle, for collocations from July to October 2002, show good agreement (within +/−15%) between the altitude range from 22 to 33 km. The results from the comparison of all collocated NO2 profiles from SCIAMACHY and those from SAGE II transformed to the SCIAMACHY solar zenith angle show a systematic negative bias of 10 to 35% between 20 km to 38 km with a small standard deviation between 5 to 14%. These results agree with those of Newchurch and Ayoub (2004), implying that above 20 km NO2 profiles from SAGE II sunset are probably somewhat high.



2005 ◽  
Vol 5 (9) ◽  
pp. 2357-2368 ◽  
Author(s):  
A. Bracher ◽  
L. N. Lamsal ◽  
M. Weber ◽  
K. Bramstedt ◽  
M. Coldewey-Egbers ◽  
...  

Abstract. Global stratospheric ozone columns derived from UV nadir spectra measured by SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography; data ESA Versions 5.01 and 5.04) aboard the recently launched Environmental Satellite (ENVISAT) from January to June 2003 were compared to collocated total ozone data from GOME (Global Ozone Monitoring Experiment on ERS-2) retrieved using the weighting function DOAS algorithm (WFDOAS; Version 1.0) in order to assess the level-2 data (trace gas data) retrieval accuracy from SCIAMACHY. In addition, SCIAMACHY ozone columns retrieved with WFDOAS V1.0 were compared to GOME WFDOAS for some selected days in 2003 in order to separate data quality issues that either come from the optical performance of the instrument or algorithm implementation. Large numbers of collocated total ozone data from the two instruments, which are flying in the same orbit about 30 min apart, were spatially binned into regular 2.5° times 2.5° grids and then compared. Results of these satellite comparisons show that SCIAMACHY O3 vertical columns (ESA Version 5.01/5.04) are on average 1% (±2%) lower than GOME WFDOAS and scatter increases at solar zenith angles above 85° and at very low total ozone values. Results show dependencies on the solar zenith angle, latitudes, and total ozone amounts which are explained by the implementation of an outdated GOME algorithm based on GOME Data Processor (GDP) version 2.4 algorithms for the SCIAMACHY operational product. The reprocessing with an algorithm equivalent to GOME WFDOAS V1.0 shows that the offset and dependencies on solar zenith angle, latitude, and total ozone disappear and that SCIAMACHY WFDOAS data are within 1% of GOME WFDOAS. Since GOME lost its global coverage in July 2003 due to data rate limitation, continuation of the total ozone time series with SCIAMACHY is of highest importance for long-term trend monitoring. Since the beginning of its operation in March 2002 the SCIAMACHY instrument has performed stable. With the application of proper algorithms to retrieve total ozone, SCIAMACHY will be able to contribute to the global long term satellite total ozone record and it has the potential to achieve the high accuracy of GOME total ozone.



2016 ◽  
Vol 9 (9) ◽  
pp. 4701-4718 ◽  
Author(s):  
Charles Étienne Robert ◽  
Christine Bingen ◽  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Emmanuel Dekemper ◽  
...  

Abstract. AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, refines the aerosol spectral parameterization, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterization of the stratospheric aerosol extinction for a wide range of wavelengths.In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. The aerosol extinction intercomparisons for λ < 700 nm and above 20 km show agreements with SAGE II version 7 and SAGE III version 4.0 within ±15 % and ±45 %, respectively. There is a strong positive bias below 20 km at λ < 700 nm, which suggests that cirrus clouds at these altitudes have a large impact on the extinction values. Comparisons performed with GOMOS IPF v6.01 alongside AerGOM show that at short wavelengths and altitudes below 20 km, IPF retrievals are more accurate when evaluated against SAGE II and SAGE III but are much less precise than AerGOM. A modified aerosol spectral parameterization can improve AerGOM in this spectral and altitude range and leads to results that have an accuracy similar to IPF retrievals. Comparisons of AerGOM aerosol extinction coefficients with OSIRIS and SAGE III measurements at wavelengths larger than 700 nm show a very large negative bias at altitudes above 25 km. Therefore, the use of AerGOM aerosol extinction data is not recommended for λ > 700 nm.Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle and latitude of observation. A systematic analysis is carried out to identify biases in the dataset, using the various spaceborne instruments as references. The quality of the aerosol retrieval is mainly influenced by the star magnitude, as well as star temperature to a lesser degree. To ensure good-quality profiles, we suggest to select occultations performed with star magnitude M < 2.5 and star temperature T > 6 × 103 K. Stray-light contamination is negligible for extinction coefficients below 700 nm using occultations performed with a solar zenith angle  > 110° but becomes important at larger wavelengths. Comparison of AerGOM results in the tropics shows an enhanced bias below 20 km that seem to confirm cirrus clouds as its cause. There are also differences between mid-latitude and tropical observations that cannot yet be explained, with a bias difference of up to 25 %.This bias characterization is extremely important for data users and might prove valuable for the production of unbiased long-term merged dataset.



2004 ◽  
Vol 22 (6) ◽  
pp. 1947-1960 ◽  
Author(s):  
F. Culot ◽  
C. Lathuillère ◽  
J. Lilensten ◽  
O. Witasse

Abstract. A 1-D fluid/kinetic code is used to model WIND Imaging Interferometer measurements of the atomic oxygen (3P-1D) red and (-1D-1S) green thermospheric dayglows at 630.0nm and 557.7nm. This modelling is performed for different latitude and solar zenith angle conditions, in order to reproduce the measurements all along the satellite orbit. Results are successfully compared to the interferometer's observations, reproducing the measured volume emission rates, together with the maximum emission altitude. A good agreement is found regardless of the position considered along the satellite orbit, meaning that the solar flux and the solar zenith angle influences were successfully taken into account. Together with this model study, a four-year red and green oxygen lines set of WINDII data is analysed with regards to those geophysical parameters. Correlations between volume emission rates and solar flux are evaluated and it is found that the MgII index is better suited to this kind of study than the f10.7 decimetric index.



2005 ◽  
Vol 22 (2) ◽  
pp. 146-164 ◽  
Author(s):  
Seiji Kato ◽  
Fred G. Rose ◽  
Thomas P. Charlock

Abstract The respective errors caused by the gamma-weighted two-stream approximation and the effective thickness approximation for computing the domain-averaged broadband shortwave irradiance are evaluated using cloud optical thicknesses derived from 1 h of radiance measurements by the Moderate Resolution Imaging Spectrometer (MODIS) over footprints of Clouds and the Earth’s Radiant Energy System (CERES) instruments. Domains are CERES footprints of which dimension varies approximately from 20 to 70 km, depending on the viewing zenith angle of the instruments. The average error in the top-of-atmosphere irradiance at a 30° solar zenith angle caused by the gamma-weighted two-stream approximation is 6.1 W m−2 (0.005 albedo bias) with a one-layer overcast cloud where a positive value indicates an overestimate by the approximation compared with the irradiance computed using the independent column approximation. Approximately one-half of the error is due to deviations of optical thickness distributions from a gamma distribution and the other half of the error is due to other approximations in the model. The error increases to 14.7 W m−2 (0.012 albedo bias) when the computational layer dividing the cloud layer is increased to four. The increase is because of difficulties in treating the correlation of cloud properties in the vertical direction. Because the optical thickness under partly cloudy conditions, which contribute two-thirds of cloudy footprints, is smaller, the error is smaller than under overcast conditions; the average error for partly cloudy condition is −2.4 W m−2 (−0.002 albedo bias) at a 30° solar zenith angle. The corresponding average error caused by the effective thickness approximation is 0.5 W m−2 for overcast conditions and −21.5 W m−2 (−0.018 albedo bias) for partly cloudy conditions. Although the error caused by the effective thickness approximation depends strongly on the optical thickness, its average error under overcast conditions is smaller than the error caused by the gamma-weighted two-stream approximation because the errors at small and large optical thicknesses cancel each other. Based on these error analyses, the daily average error caused by the gamma-weighted two-stream and effective thickness approximations is less than 2 W m−2.



2008 ◽  
Vol 8 (3) ◽  
pp. 9855-9881 ◽  
Author(s):  
W. A. Lotz ◽  
M. Vountas ◽  
T. Dinter ◽  
J. P. Burrows

Abstract. A simple scheme has been developed to discriminate surface, sun glint and cloud properties in satellite based spectrometer data utilizing visible and near infrared information. It has been designed for the use with data measured by SCIAMACHY's (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) Polarization Measurement Devices but the applicability is not strictly limited to this instrument. The scheme is governed by a set of constraints and thresholds developed by using satellite imagery and meteorological data. Classification targets are ice, water and generic clouds, sun glint and surface parameters, such as water, snow/ice, desert and vegetation. The validation is done using MERIS (MEdium Resolution Imaging Spectrometer) and meteorological data from METAR (MÉTéorologique Aviation Régulière – a network for the provision of meteorological data for aviation). Qualitative and quantitative validation using MERIS satellite imagery shows good agreement. The comparison with METAR data exhibits very good agreement.



2021 ◽  
Author(s):  
Simonne Guilbert ◽  
Frédéric Parol ◽  
Céline Cornet ◽  
Nicolas Ferlay ◽  
François Thieuleux

&lt;p&gt;Radiative Budget, essential to the monitoring of climate change, can be investigated with ERB-dedicated instruments like the Clouds and the Earth Radiant Energy System (CERES) instrument (Wielicki, 1996). On the other side, non-dedicated instruments, such as POLDER-3/PARASOL measuring narrowband radiances, can also be used advantageously to obtain shortwave albedos and fluxes (Buriez et al, 2007; Viollier et al, 2002).&lt;/p&gt;&lt;p&gt;We present here a comparison between the shortwave fluxes and albedos derived from POLDER-3 and those derived from CERES flying aboard Aqua, chosen as a reference.&lt;/p&gt;&lt;p&gt;Monthly means of shortwave fluxes computed from the measurements of the two instruments are first set side by side. They show a good agreement in the all-sky case. However, after December 2009, the values from POLDER-3 display a slight drift which coincides with the lowering of the orbit of the PARASOL satellite and the modification of its overpass time in comparison to the other satellites of the A-Train mission. In clear sky situations, greater differences between POLDER and CERES shortwave fluxes are observed, especially over land regions, and the drift increases faster after 2009.&lt;/p&gt;&lt;p&gt;A second comparison is presented, between instantaneous albedos. For the period of coincident observations between POLDER-3 and CERES/Aqua, there is a good correlation between both products. This correlation deteriorates when the comparison is extended after 2009, as the values given by POLDER-3 increase. This result is expected, as the albedo is a function of the Solar Zenith Angle.&lt;/p&gt;&lt;p&gt;The slope of the increase of instantaneous albedo values is higher than for the diurnally extrapolated, monthly averaged shortwave fluxes. This tends to show that the POLDER algorithm leading to the monthly means of diurnal shortwave albedos moderates the increase of instantaneous shortwave albedo values but it doesn&amp;#8217;t completely compensate for the effects of the drift of the instrument.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Plank ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Michael Nolde ◽  
Sandro Martinis

AbstractSatellite-based Earth observation plays a key role for monitoring volcanoes, especially those which are located in remote areas and which very often are not observed by a terrestrial monitoring network. In our study we jointly analyzed data from thermal (Moderate Resolution Imaging Spectrometer MODIS and Visible Infrared Imaging Radiometer Suite VIIRS), optical (Operational Land Imager and Multispectral Instrument) and synthetic aperture radar (SAR) (Sentinel-1 and TerraSAR-X) satellite sensors to investigate the mid-October 2019 surtseyan eruption at Late’iki Volcano, located on the Tonga Volcanic Arc. During the eruption, the remains of an older volcanic island formed in 1995 collapsed and a new volcanic island, called New Late’iki was formed. After the 12 days long lasting eruption, we observed a rapid change of the island’s shape and size, and an erosion of this newly formed volcanic island, which was reclaimed by the ocean two months after the eruption ceased. This fast erosion of New Late’iki Island is in strong contrast to the over 25 years long survival of the volcanic island formed in 1995.



2021 ◽  
Vol 42 (11) ◽  
pp. 4224-4240
Author(s):  
Gyuyeon Kim ◽  
Yong-Sang Choi ◽  
Sang Seo Park ◽  
Jhoon Kim


2021 ◽  
Vol 20 (2) ◽  
pp. 265-274
Author(s):  
Angela C. G. B. Leal ◽  
Marcelo P. Corrêa ◽  
Michael F. Holick ◽  
Enaldo V. Melo ◽  
Marise Lazaretti-Castro


Sign in / Sign up

Export Citation Format

Share Document