scholarly journals Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI

2006 ◽  
Vol 6 (12) ◽  
pp. 4427-4459 ◽  
Author(s):  
D. T. Shindell ◽  
G. Faluvegi ◽  
N. Unger ◽  
E. Aguilar ◽  
G. A. Schmidt ◽  
...  

Abstract. A model of atmospheric composition and climate has been developed at the NASA Goddard Institute for Space Studies (GISS) that includes composition seamlessly from the surface to the lower mesosphere. The model is able to capture many features of the observed magnitude, distribution, and seasonal cycle of trace species. The simulation is especially realistic in the troposphere. In the stratosphere, high latitude regions show substantial biases during period when transport governs the distribution as meridional mixing is too rapid in this model version. In other regions, including the extrapolar tropopause region that dominates radiative forcing (RF) by ozone, stratospheric gases are generally well-simulated. The model's stratosphere-troposphere exchange (STE) agrees well with values inferred from observations for both the global mean flux and the ratio of Northern (NH) to Southern Hemisphere (SH) downward fluxes. Simulations of preindustrial (PI) to present-day (PD) changes show tropospheric ozone burden increases of 11% while the stratospheric burden decreases by 18%. The resulting tropopause RF values are −0.06 W/m2 from stratospheric ozone and 0.40 W/m2 from tropospheric ozone. Global mean mass-weighted OH decreases by 16% from the PI to the PD. STE of ozone also decreased substantially during this time, by 14%. Comparison of the PD with a simulation using 1979 pre-ozone hole conditions for the stratosphere shows a much larger downward flux of ozone into the troposphere in 1979, resulting in a substantially greater tropospheric ozone burden than that seen in the PD run. This implies that reduced STE due to stratospheric ozone depletion may have offset as much as 2/3 of the tropospheric ozone burden increase from PI to PD. However, the model overestimates the downward flux of ozone at high Southern latitudes, so this estimate is likely an upper limit. In the future, the tropospheric ozone burden increases by 101% in 2100 for the A2 scenario including both emissions and climate changes. The primary reason is enhanced STE, which increases by 124% (168% in the SH extratropics, and 114% in the NH extratropics). Climate plays a minimal role in the SH increases, but contributes 38% in the NH. Chemistry and dry deposition both change so as to reduce tropospheric ozone, partially in compensation for the enhanced STE, but the increased ozone influx dominates the burden changes. The net RF due to projected ozone changes is 0.8 W/m2 for A2. The influence of climate change alone is −0.2 W/m2, making it a substantial contributor to the net RF. The tropospheric oxidation capacity increases seven percent in the full A2 simulation, and 36% due to A2 climate change alone.

2006 ◽  
Vol 6 (3) ◽  
pp. 4795-4878 ◽  
Author(s):  
D. T. Shindell ◽  
G. Faluvegi ◽  
N. Unger ◽  
E. Aguilar ◽  
G. A. Schmidt ◽  
...  

Abstract. A model of atmospheric composition and climate has been developed at the NASA Goddard Institute for Space Studies (GISS) that includes composition seamlessly from the surface to the lower mesosphere. The model is able to capture many features of the observed magnitude, distribution, and seasonal cycle of trace species. The simulation is especially realistic in the troposphere. In the stratosphere, high latitude regions show substantial biases during period when transport governs the distribution as meridional mixing is too rapid in this model version. In other regions, including the extrapolar tropopause region that dominates radiative forcing (RF) by ozone, stratospheric gases are generally well-simulated. The model's stratosphere-troposphere exchange (STE) agrees well with values inferred from observations for both the global mean flux and the ratio of Northern to Southern Hemisphere downward fluxes. Simulations of preindustrial (PI) to present-day (PD) changes show tropospheric ozone burden increases of 11% while the stratospheric burden decreases by 18%. The resulting tropopause RF values are −0.06 W/m2 from stratospheric ozone and 0.40 W/m2 from tropospheric ozone. Global mean mass-weighted OH decreases by 16% from the PI to the PD. STE of ozone also decreased substantially during this time, by 14%. Comparison of the PD with a simulation using 1979 pre-ozone hole conditions for the stratosphere shows a much larger downward flux of ozone into the troposphere in 1979, resulting in a substantially greater tropospheric ozone burden than that seen in the PD run. This implies that reduced STE due to Antarctic ozone depletion may have offset as much as 2/3 of the tropospheric ozone burden increase from PI to PD. However, the model overestimates the downward flux of ozone at high Southern latitudes, so this estimate is likely an upper limit. In the future, the tropospheric ozone burden increases sharply in 2100 for the A1B and A2 scenarios, by 41% and 101%, respectively. The primary reason is enhanced STE, which increases by 71% and 124% in the two scenarios. Chemistry and dry deposition both change so as to reduce ozone, partially in compensation for the enhanced STE. Thus even in the high-pollution A2 scenario, and certainly in A1B, the increased ozone influx dominates the burden changes. However, STE has the greatest influence on middle and high latitudes and towards the upper troposphere, so RF and surface air quality are dominated by emissions. Net RF values due to projected ozone changes depend strongly on the scenario, with 0.1 W/m2 for A1B and 0.8 W/m2 for A2. Changes in oxidation capacity are also scenario dependent, with values of plus and minus seven percent in the A2 and A1B scenarios, respectively.


2018 ◽  
Vol 18 (9) ◽  
pp. 6121-6139 ◽  
Author(s):  
Fernando Iglesias-Suarez ◽  
Douglas E. Kinnison ◽  
Alexandru Rap ◽  
Amanda C. Maycock ◽  
Oliver Wild ◽  
...  

Abstract. Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm−2, (2) 163 ± 109 m Wm−2, and (3) 238 ± 113 m Wm−2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm−2 relative to year 2000 and 760 ± 230 m Wm−2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry–climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm−2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ∼ 50 % of the overall radiative forcing for the 2000–2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.


2006 ◽  
Vol 6 (3) ◽  
pp. 575-599 ◽  
Author(s):  
M. Gauss ◽  
G. Myhre ◽  
I. S. A. Isaksen ◽  
V. Grewe ◽  
G. Pitari ◽  
...  

Abstract. Changes in atmospheric ozone have occurred since the preindustrial era as a result of increasing anthropogenic emissions. Within ACCENT, a European Network of Excellence, ozone changes between 1850 and 2000 are assessed for the troposphere and the lower stratosphere (up to 30 km) by a variety of seven chemistry-climate models and three chemical transport models. The modeled ozone changes are taken as input for detailed calculations of radiative forcing. When only changes in chemistry are considered (constant climate) the modeled global-mean tropospheric ozone column increase since preindustrial times ranges from 7.9 DU to 13.8 DU among the ten participating models, while the stratospheric column reduction lies between 14.1 DU and 28.6 DU in the models considering stratospheric chemistry. The resulting radiative forcing is strongly dependent on the location and altitude of the modeled ozone change and varies between 0.25 Wm−2 and 0.45 Wm−2 due to ozone change in the troposphere and −0.123 Wm−2 and +0.066 Wm−2 due to the stratospheric ozone change. Changes in ozone and other greenhouse gases since preindustrial times have altered climate. Six out of the ten participating models have performed an additional calculation taking into account both chemical and climate change. In most models the isolated effect of climate change is an enhancement of the tropospheric ozone column increase, while the stratospheric reduction becomes slightly less severe. In the three climate-chemistry models with detailed tropospheric and stratospheric chemistry the inclusion of climate change increases the resulting radiative forcing due to tropospheric ozone change by up to 0.10 Wm−2, while the radiative forcing due to stratospheric ozone change is reduced by up to 0.034 Wm−2. Considering tropospheric and stratospheric change combined, the total ozone column change is negative while the resulting net radiative forcing is positive.


2020 ◽  
Vol 12 (3) ◽  
pp. 1649-1677 ◽  
Author(s):  
Nicolas Bellouin ◽  
Will Davies ◽  
Keith P. Shine ◽  
Johannes Quaas ◽  
Johannes Mülmenstädt ◽  
...  

Abstract. Radiative forcing provides an important basis for understanding and predicting global climate changes, but its quantification has historically been done independently for different forcing agents, has involved observations to varying degrees, and studies have not always included a detailed analysis of uncertainties. The Copernicus Atmosphere Monitoring Service reanalysis is an optimal combination of modelling and observations of atmospheric composition. It provides a unique opportunity to rely on observations to quantify the monthly and spatially resolved global distributions of radiative forcing consistently for six of the largest forcing agents: carbon dioxide, methane, tropospheric ozone, stratospheric ozone, aerosol–radiation interactions, and aerosol–cloud interactions. These radiative-forcing estimates account for adjustments in stratospheric temperatures but do not account for rapid adjustments in the troposphere. On a global average and over the period 2003–2017, stratospherically adjusted radiative forcing of carbon dioxide has averaged +1.89 W m−2 (5 %–95 % confidence interval: 1.50 to 2.29 W m−2) relative to 1750 and increased at a rate of 18 % per decade. The corresponding values for methane are +0.46 (0.36 to 0.56) W m−2 and 4 % per decade but with a clear acceleration since 2007. Ozone radiative-forcing averages +0.32 (0 to 0.64) W m−2, almost entirely contributed by tropospheric ozone since stratospheric ozone radiative forcing is only +0.003 W m−2. Aerosol radiative-forcing averages −1.25 (−1.98 to −0.52) W m−2, with aerosol–radiation interactions contributing −0.56 W m−2 and aerosol–cloud interactions contributing −0.69 W m−2 to the global average. Both have been relatively stable since 2003. Taking the six forcing agents together, there is no indication of a sustained slowdown or acceleration in the rate of increase in anthropogenic radiative forcing over the period. These ongoing radiative-forcing estimates will monitor the impact on the Earth's energy budget of the dramatic emission reductions towards net-zero that are needed to limit surface temperature warming to the Paris Agreement temperature targets. Indeed, such impacts should be clearly manifested in radiative forcing before being clear in the temperature record. In addition, this radiative-forcing dataset can provide the input distributions needed by researchers involved in monitoring of climate change, detection and attribution, interannual to decadal prediction, and integrated assessment modelling. The data generated by this work are available at https://doi.org/10.24380/ads.1hj3y896 (Bellouin et al., 2020b).


2017 ◽  
Author(s):  
Fernando Iglesias-Suarez ◽  
Douglas E. Kinnison ◽  
Alexandru Rap ◽  
Oliver Wild ◽  
Paul J. Young

Abstract. Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study we investigated the radiative effects of future ozone changes, using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathways 8.5 (RCP8.5) scenario, we quantified the individual contributions to ozone radiative forcing of (1) climate change (with and without lightning feedback), (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculated future ozone radiative forcing relative to year 2000 of (1) 63 ± 76 m Wm−2, (2) 129 ± 81 m Wm−2, and (3) 225 ± 85 m Wm−2, due to climate change, ODSs and methane respectively. Our best estimate of net ozone forcing in this set of simulations is 420 ± 120 m Wm−2 relative to year 2000, and 750 ± 230 m Wm−2 relative to year 1750, with uncertainty range given by approximately ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is small (46 m Wm−2). Ozone forcings associated with climate change and stratospheric ozone recovery are robust with regard to background conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ~ 47 % of the overall radiative forcing in this set of simulations, highlighting the key role of the stratosphere in determining future radiative forcing.


2005 ◽  
Vol 5 (4) ◽  
pp. 5751-5807 ◽  
Author(s):  
M. Gauss ◽  
G. Myhre ◽  
I. S. A. Isaksen ◽  
W. J. Collins ◽  
F. J. Dentener ◽  
...  

Abstract. Changes in atmospheric ozone have occurred since the preindustrial era as a result of increasing anthropogenic emissions. Within ACCENT, a European Network of Excellence, ozone changes between 1850 and 2000 are assessed for the troposphere and the lower stratosphere (up to 30 km) by a variety of seven chemistry-climate models and three chemical transport models. The modeled ozone changes are taken as input for detailed calculations of radiative forcing. When only changes in chemistry are considered (constant climate) the modeled global-mean tropospheric ozone column increase since preindustrial times ranges from 7.9 DU to 13.8 DU among the ten participating models, while the stratospheric column reduction lies between 14.1 DU and 47.9 DU in the models considering stratospheric chemistry. The resulting radiative forcing is strongly dependent on the location and altitude of the modeled ozone change and varies between 0.26 Wm−2 and 0.53 Wm−2 due to ozone change in the troposphere and −0.25 Wm−2 and +0.12 Wm−2 due to the stratospheric ozone change. Changes in ozone and other greenhouse gases since preindustrial times have altered climate. Six out of the ten participating models have performed an additional calculation taking into account both chemical and climate change. The isolated effect of climate change is an enhancement of the tropospheric ozone column increase in all models, ranging from 1% to 37%, while the stratospheric reduction becomes slightly less severe in most models. In the three climate-chemistry models with detailed tropospheric and stratospheric chemistry the inclusion of climate change increases the resulting radiative forcing due to tropospheric ozone change by up to 0.08 Wm−2, while the radiative forcing due to stratospheric ozone change is reduced by up to 0.14 Wm−2. Considering tropospheric and stratospheric change combined, the total ozone column change is negative while the resulting net radiative forcing is positive.


2017 ◽  
Author(s):  
Antara Banerjee ◽  
Amanda C. Maycock ◽  
John A. Pyle

Abstract. The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model. Projected measures to improve air-quality through reductions in tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 Wm−2. This is opposed by a positive ozone RF of 0.07 Wm−2 due to future decreases in ODSs, which is mainly driven by an increase in tropospheric ozone through stratosphere-to-troposphere exchange. An increase in methane abundance by more than a factor of two (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.19 Wm−2, which would greatly outweigh the climate benefits of tropospheric non-methane ozone precursor reductions. A third of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gas concentrations, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.06 Wm−2) for RCP4.5 and a negative RF (−0.07 Wm−2) for the RCP8.5 scenario. This dependence arises from differences in the contribution to RF from stratospheric ozone changes.


2011 ◽  
Vol 11 (4) ◽  
pp. 10875-10933 ◽  
Author(s):  
I. Cionni ◽  
V. Eyring ◽  
J. F. Lamarque ◽  
W. J. Randel ◽  
D. S. Stevenson ◽  
...  

Abstract. A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multi-model mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and PUCCINI) and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23 W m−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08 W m−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05 W m−2, but which is within the stated range of −0.15 to +0.05 W m−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).


2005 ◽  
Vol 5 (5) ◽  
pp. 10517-10612 ◽  
Author(s):  
G. A. Folberth ◽  
D. A. Hauglustaine ◽  
J. Lathière ◽  
F. Brocheton

Abstract. We present a description and evaluation of LMDz-INCA, a global three-dimensional chemistry-climate model, pertaining to its recently developed NMHC version. In this substantially extended version of the model a comprehensive representation of the photochemistry of non-methane hydrocarbons (NMHC) and volatile organic compounds (VOC) from biogenic, anthropogenic, and biomass-burning sources has been included. The tropospheric annual mean methane (9.2 years) and methylchloroform (5.5 years) chemical lifetimes are well within the range of previous modelling studies and are in excellent agreement with estimates established by means of global observations. The model provides a reasonable simulation of the horizontal and vertical distribution and seasonal cycle of CO and key non-methane VOC, such as acetone, methanol, and formaldehyde as compared to observational data from several ground stations and aircraft campaigns. LMDz-INCA in the NMHC version reproduces tropospheric ozone concentrations fairly well throughout most of the troposphere. The model is applied in several sensitivity studies of the biosphere-atmosphere photochemical feedback. The impact of surface emissions of isoprene, acetone, and methanol is studied. These experiments show a substantial impact of isoprene on tropospheric ozone and carbon monoxide concentrations revealing an increase in surface O3 and CO levels of up to 30 ppbv and 60 ppbv, respectively. Isoprene also appears to significantly impact the global OH distribution resulting in a decrease of the global mean tropospheric OH concentration by approximately 0.9×105 molecules cm−3 or roughly 10% and an increase in the global mean tropospheric methane lifetime by approximately four months. A global mean ozone net radiative forcing due to the isoprene induced increase in the tropospheric ozone burden of 0.09W m−2 is found. The key role of isoprene photooxidation in the global tropospheric redistribution of NOx is demonstrated. LMDz-INCA calculates an increase of PAN surface mixing ratios ranging from 75 to 750 pptv and 10 to 250 pptv during northern hemispheric summer and winter, respectively. Acetone and methanol are found to play a significant role in the upper troposphere/lower stratosphere (UT/LS) budget of peroxy radicals. Calculations with LMDz-INCA show an increase in HOx concentrations region of 8 to 15% and 10 to 15% due to methanol and acetone biogenic surface emissions, respectively. The model has been used to estimate the global tropospheric CO budget. A global CO source of 3019 TgCO yr−1 is estimated. This source divides into a primary source of 1533 TgCO yr−1 and secondary source of 1489 TgCO yr−1 deriving from VOC photooxidation. Global VOC-to-CO conversion efficiencies of 90% for methane and between 20 and 45% for individual VOC are calculated by LMDz-INCA.


2019 ◽  
Vol 19 (6) ◽  
pp. 3589-3620 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability, and its changes and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified-dynamics chemistry–climate model (CCM) simulations from the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the International Global Atmospheric Chemistry – Stratosphere-troposphere Processes And their Role in Climate (IGAC-SPARC) (IGAC–SPARC) Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozone-sonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (∼0–5.5 km) sub-column ozone is found for EMAC, ranging from 2 to 8 Dobson units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (∼±4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozone-sondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with a negative bias in the troposphere resulting from a likely underestimation of photochemical ozone production. This has ramifications for diagnosing the level of model–measurement agreement. Model variability is found to be more similar in magnitude to that implied from ozone-sondes in comparison with OMI, which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is inferred that CMAM simulates a faster and shallower Brewer–Dobson circulation (BDC) compared to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is significant and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long-term changes in the CCM ozone tracers are calculated for different seasons. An overall statistically significant increase in tropospheric ozone is found across much of the world but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5 %–10 %) between 1980–1989 and 2001–2010. Our model study implies that attribution from stratosphere–troposphere exchange (STE) to such ozone changes ranges from 25 % to 30 % at the surface to as much as 50 %–80 % in the upper troposphere–lower stratosphere (UTLS) across some regions of the world, including western Eurasia, eastern North America, the South Pacific and the southern Indian Ocean. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


Sign in / Sign up

Export Citation Format

Share Document