scholarly journals Rapid growth of HFC-227ea (1,1,1,2,3,3,3-Heptafluoropropane) in the atmosphere

2010 ◽  
Vol 10 (3) ◽  
pp. 7675-7697
Author(s):  
J. C. Laube ◽  
P. Martinerie ◽  
E. Witrant ◽  
T. Blunier ◽  
J. Schwander ◽  
...  

Abstract. We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in remote regions of the atmosphere and present evidence for its rapid growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.026 ppt per year in 2000 to 0.057 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by more than a factor of three.

2010 ◽  
Vol 10 (13) ◽  
pp. 5903-5910 ◽  
Author(s):  
J. C. Laube ◽  
P. Martinerie ◽  
E. Witrant ◽  
T. Blunier ◽  
J. Schwander ◽  
...  

Abstract. We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the current northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.029 ppt per year in 2000 to 0.056 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by a factor of three.


2011 ◽  
Vol 4 (11) ◽  
pp. 2441-2451 ◽  
Author(s):  
B. D. Hall ◽  
G. S. Dutton ◽  
D. J. Mondeel ◽  
J. D. Nance ◽  
M. Rigby ◽  
...  

Abstract. Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt) yr−1 (95% C.L.).


2018 ◽  
Vol 18 (6) ◽  
pp. 4153-4169 ◽  
Author(s):  
Peter G. Simmonds ◽  
Matthew Rigby ◽  
Archie McCulloch ◽  
Martin K. Vollmer ◽  
Stephan Henne ◽  
...  

Abstract. High frequency measurements of trifluoromethane (HFC-23, CHF3), a potent hydrofluorocarbon greenhouse gas, largely emitted to the atmosphere as a by-product of the production of the hydrochlorofluorocarbon HCFC-22 (CHClF2), at five core stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, combined with measurements on firn air, old Northern Hemisphere air samples and Cape Grim Air Archive (CGAA) air samples, are used to explore the current and historic changes in the atmospheric abundance of HFC-23. These measurements are used in combination with the AGAGE 2-D atmospheric 12-box model and a Bayesian inversion methodology to determine model atmospheric mole fractions and the history of global HFC-23 emissions. The global modelled annual mole fraction of HFC-23 in the background atmosphere was 28.9 ± 0.6 pmol mol−1 at the end of 2016, representing a 28 % increase from 22.6 ± 0.4 pmol mol−1 in 2009. Over the same time frame, the modelled mole fraction of HCFC-22 increased by 19 % from 199 ± 2 to 237 ± 2 pmol mol−1. However, unlike HFC-23, the annual average HCFC-22 growth rate slowed from 2009 to 2016 at an annual average rate of −0.5 pmol mol−1 yr−2. This slowing atmospheric growth is consistent with HCFC-22 moving from dispersive (high fractional emissions) to feedstock (low fractional emissions) uses, with HFC-23 emissions remaining as a consequence of incomplete mitigation from all HCFC-22 production.Our results demonstrate that, following a minimum in HFC-23 global emissions in 2009 of 9.6 ± 0.6, emissions increased to a maximum in 2014 of 14.5 ± 0.6 Gg yr−1 and then declined to 12.7 ± 0.6 Gg yr−1 (157 Mt CO2 eq. yr−1) in 2016. The 2009 emissions minimum is consistent with estimates based on national reports and is likely a response to the implementation of the Clean Development Mechanism (CDM) to mitigate HFC-23 emissions by incineration in developing (non-Annex 1) countries under the Kyoto Protocol. Our derived cumulative emissions of HFC-23 during 2010–2016 were 89 ± 2 Gg (1.1 ± 0.2 Gt CO2 eq.), which led to an increase in radiative forcing of 1.0 ± 0.1 mW m−2 over the same period. Although the CDM had reduced global HFC-23 emissions, it cannot now offset the higher emissions from increasing HCFC-22 production in non-Annex 1 countries, as the CDM was closed to new entrants in 2009. We also find that the cumulative European HFC-23 emissions from 2010 to 2016 were  ∼  1.3 Gg, corresponding to just 1.5 % of cumulative global HFC-23 emissions over this same period. The majority of the increase in global HFC-23 emissions since 2010 is attributed to a delay in the adoption of mitigation technologies, predominantly in China and East Asia. However, a reduction in emissions is anticipated, when the Kigali 2016 amendment to the Montreal Protocol, requiring HCFC and HFC production facilities to introduce destruction of HFC-23, is fully implemented.


2011 ◽  
Vol 4 (4) ◽  
pp. 4131-4163 ◽  
Author(s):  
B. D. Hall ◽  
G. S. Dutton ◽  
D. J. Mondeel ◽  
J. D. Nance ◽  
M. Rigby ◽  
...  

Abstract. Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2 %. A method for improving measurement precision is described. We have modified a common GC-ECD method to achieve measurement precision of 0.5 % or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10 % decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30 ± 0.03 pmol mol−1 (ppt) yr−1 (95 % C.L.).


2009 ◽  
Vol 2 (5) ◽  
pp. 2377-2401 ◽  
Author(s):  
A. K. Baker ◽  
F. Slemr ◽  
C. A. M. Brenninkmeijer

Abstract. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) is a long-term monitoring program making regular atmospheric measurements from an instrument container installed monthly aboard a passenger aircraft. Typical cruising altitudes of the aircraft allow for the study of the free troposphere and the extra-tropical upper troposphere as well as the lowermost stratosphere. CARIBIC measurements include a number of real time analyses as well as the collection of aerosol and whole air samples. These whole air samples are analyzed post-flight for a suite of trace gases, which includes non-methane hydrocarbons (NMHC). The NMHC measurement system and its analytical performance are described here. Precision was found to vary slightly by compound, and is less than 2% for the C2–C6 alkanes and ethyne, and between 1 and 6% for C7–C8 alkanes and aromatic compounds. Preliminary results from participation in a Global Atmospheric Watch (WMO) VOC audit indicate accuracies within the precision of the system. Limits of detection are 1 pptv for most compounds, and up to 3 pptv for some aromatics. These are sufficiently low to measure mixing ratios typically observed in the upper troposphere and lowermost stratosphere for the longer-lived NMHC, however, in air samples from these regions many of the compounds with shorter lifetimes (<5 d) were frequently below the detection limit. Observed NMHC concentrations span many orders of magnitude, dependent on atmospheric region and air mass history, with concentrations typically decreasing with shorter chemical lifetimes.


2017 ◽  
Author(s):  
Peter G. Simmonds ◽  
Matthew Rigby ◽  
Archie McCulloch ◽  
Martin K. Vollmer ◽  
Stephan Henne ◽  
...  

Abstract. High frequency measurements of the potent hydrofluorocarbon greenhouse gas CHF3 (HFC-23), a by-product of production of the hydrochlorofluorocarbon HCFC-22 (CHClF2), at five core stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, combined with measurements of firn and Cape Grim Air Archive (CGAA) air samples, are used to explore the changing atmospheric abundance of HFC-23. These measurements are used in combination with the AGAGE 2-D atmospheric 12-box model and a Bayesian inversion methodology to determine model atmospheric mole fractions and the atmospheric history of global HFC-23 emissions. The global modelled annual mole fraction of HFC-23 in the background atmosphere was 28.9 ± 0.6 pmol mol−1 at the end of 2016, representing a 28 % increase from 22.6 ± 0.4 pmol mol−1 in 2009. Over the same time frame, the modelled mole fraction of HCFC-22 increased by 19 % from 199 ± 2 pmol mol−1 to 237 ± 2 pmol mol−1. However, the annual average HCFC-22 growth rate decelerated from 2009 to 2016 at an annual average rate of 0.5 pmol mol−1 yr−2. Our results demonstrate that, following a minimum in HFC-23 global emissions in 2009 of 9.6 ± 0.6 Gg yr−1, emissions increased to a maximum in 2014 of 14.5 ± 0.6 Gg yr−1, declining to 12.7 ± 0.6 Gg yr−1 (157 Mt  CO2-eq. yr−1) in 2016. The 2009 emissions minimum is consistent with estimates based on national reports and is likely a response to the implementation of the Clean Development Mechanism (CDM) to mitigate HFC-23 emissions by incineration in developing (Non-Annex 1) countries under the Kyoto Protocol. Our derived cumulative emissions of HFC-23 during 2010–2016 were 89 ± 2 Gg (1.1 ± 0.2 Gt CO2-eq), which led to an increase in radiative forcing of 1.0 ± 0.1 mW m−2. Although the CDM had reduced global HFC-23 emissions, it cannot now offset the radiative forcing of higher emissions from increasing HCFC-22 production in Non-Annex 1 countries, as the CDM was closed to new entrants in 2009. We also find that the cumulative European HFC-23 emissions from 2010 to 2016 were ~ 1.3 Gg, corresponding to just 1.5 % of cumulative global HFC-23 emissions over this same period.


2020 ◽  
Vol 13 (1) ◽  
pp. 73-84
Author(s):  
Tanja J. Schuck ◽  
Ann-Katrin Blank ◽  
Elisa Rittmeier ◽  
Jonathan Williams ◽  
Carl A. M. Brenninkmeijer ◽  
...  

Abstract. Measurements of halogenated trace gases in ambient air frequently rely on canister sampling followed by offline laboratory analysis. This allows for a large number of compounds to be analysed under stable conditions, maximizing measurement precision. However, individual compounds might be affected during the sampling and storage of canister samples. In order to assess halocarbon stability in whole-air samples from the upper troposphere and lowermost stratosphere, we performed stability tests using the high-resolution sampler (HIRES) air sampling unit, which is part of the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) instrument package. The HIRES unit holds 88 lightweight stainless-steel cylinders that are pressurized in flight to 4.5 bar using metal bellows pumps. The HIRES unit was first deployed in 2010 but has up to now not been used for regular halocarbon analysis with the exception of chloromethane analysis. The sample collection unit was tested for the sampling and storage effects of 28 halogenated compounds. The focus was on compound stability in the stainless-steel canisters during storage of up to 5 weeks and on the influence of ozone, since flights take place in the upper troposphere and lowermost stratosphere with ozone mixing ratios of up to several hundred parts per billion by volume (ppbv). Most of the investigated (hydro)chlorofluorocarbons and long-lived hydrofluorocarbons were found to be stable over a storage time of up to 5 weeks and were unaltered by ozone being present during pressurization. Some compounds such as dichloromethane, trichloromethane, and tetrachloroethene started to decrease in the canisters after a storage time of more than 2 weeks or exhibited lowered mixing ratios in samples pressurized with ozone present. A few compounds such as tetrachloromethane and tribromomethane were found to be unstable in the HIRES stainless-steel canisters independent of ozone levels. Furthermore, growth was observed during storage for some species, namely for HFC-152a, HFC-23, and Halon 1301.


2010 ◽  
Vol 3 (1) ◽  
pp. 311-321 ◽  
Author(s):  
A. K. Baker ◽  
F. Slemr ◽  
C. A. M. Brenninkmeijer

Abstract. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) is a long-term monitoring program making regular atmospheric measurements from an instrument container installed monthly aboard a passenger aircraft. Typical cruising altitudes of the aircraft allow for the study of the free troposphere and the extra-tropical upper troposphere as well as the lowermost stratosphere. CARIBIC measurements include a number of real time analyses as well as the collection of aerosol and whole air samples. These whole air samples are analyzed post-flight for a suite of trace gases, which includes non-methane hydrocarbons (NMHC). The NMHC measurement system and its analytical performance are described here. Precision was found to vary slightly by compound, and is less than 2% for the C2–C6 alkanes and ethyne, and between 1% and 6% for C7–C8 alkanes and aromatic compounds. Preliminary results from participation in a Global Atmospheric Watch (WMO) VOC audit indicate accuracies within the precision of the system. Limits of detection are 1 pptv for most compounds, and up to 3 pptv for some aromatics. These are sufficiently low to measure mixing ratios typically observed in the upper troposphere and lowermost stratosphere for the longer-lived NMHC, however, in air samples from these regions many of the compounds with shorter lifetimes (<5 days) were frequently below the detection limit. Observed NMHC concentrations span several orders of magnitude, dependent on atmospheric region and air mass history, with concentrations typically decreasing with shorter chemical lifetimes.


2010 ◽  
Vol 10 (5) ◽  
pp. 13519-13555
Author(s):  
M. Rigby ◽  
J. Mühle ◽  
B. R. Miller ◽  
R. G. Prinn ◽  
P. B. Krummel ◽  
...  

Abstract. We present atmospheric sulfur hexafluoride (SF6) mole fractions and emissions estimates from the 1970s to 2008. Measurements were made of archived air samples starting from 1973 in the Northern Hemisphere and from 1978 in the Southern Hemisphere, using the Advanced Global Atmospheric Gases Experiment (AGAGE) gas chromatographic–mass spectrometric (GC-MS) systems. These measurements were combined with modern high-frequency GC-MS and GC-electron capture detection (ECD) data from AGAGE monitoring sites, to produce a unique air history of this potent greenhouse gas. Atmospheric mole fractions were found to have increased by more than an order of magnitude between 1973 and 2008. The 2008 growth rate was found to be the highest recorded, at 0.29 ± 0.02 pmol mol−1 yr−1. A three-dimensional chemical transport model and a minimum variance Bayesian inverse method was used to estimate annual emission rates using the measurements. Consistent with the mole fraction growth rate maximum, global emissions during 2008 were also found to be highest in the 1973–2008 period, reaching 7.5 ± 0.4 Ggyr−1 and surpassing the previous maximum in 1995. The 2008 values follow an increase in emissions of 50 ± 25% since 2000. A second global inversion which also incorporated National Oceanic and Atmospheric Administration (NOAA) flask measurements and in situ monitoring site data was found to agree well with the emissions derived using AGAGE measurements alone. By estimating continent-scale emissions using all available AGAGE and NOAA surface measurements covering the period 2004–2008, we find that it is likely that much of the global emissions rise during this five-year period originated primarily from Asian countries that do not report emissions to the United Nations Framework Convention on Climate Change (UNFCCC). We also find it likely that SF6 emissions reported to the UNFCCC were underestimated between at least 2004 and 2007.


2019 ◽  
Author(s):  
Elise S. Droste ◽  
Karina E. Adcock ◽  
Matthew J. Ashfold ◽  
Charles Chou ◽  
Zoë Fleming ◽  
...  

Abstract. Perfluorocarbons (PFCs) are potent greenhouse gases with Global Warming Potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes on the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro(2-methylpentane) (i-C6F14). The existence and significance of PFC isomers has not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several datasets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote background Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % to 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted in the last eight years. Almost two-thirds of the CO2 equivalent emissions are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Despite this, the sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document