scholarly journals Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

2014 ◽  
Vol 14 (23) ◽  
pp. 32177-32231 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.

2015 ◽  
Vol 15 (10) ◽  
pp. 5743-5760 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


2020 ◽  
Vol 20 (3) ◽  
pp. 1565-1590 ◽  
Author(s):  
Samuel E. LeBlanc ◽  
Jens Redemann ◽  
Connor Flynn ◽  
Kristina Pistone ◽  
Meloë Kacenelenbogen ◽  
...  

Abstract. The southeast Atlantic (SEA) region is host to a climatologically significant biomass burning aerosol layer overlying marine stratocumulus. We present the first results of the directly measured above-cloud aerosol optical depth (ACAOD) from the recent ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) airborne field campaign during August and September 2016. In our analysis, we use data from the Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) instrument and found an average ACAOD of 0.32 at 501 nm (range of 0.02 to 1.04), with an average Ångström exponent (AE) above clouds of 1.71. The AE is much lower at 1.25 for the full column (including below-cloud-level aerosol, with an average of 0.36 at 501 nm and a range of 0.02 to 0.74), indicating the presence of large aerosol particles, likely marine aerosol, in the lower atmospheric column. The ACAOD is observed from 4STAR to be highest near the coast at about 12∘ S, whereas its variability is largest at the southern edge of the average aerosol plume, as indicated by 12 years of MODIS observations. In comparison to MODIS-derived ACAOD and long-term fine-mode plume-average AOD along a diagonal routine track extending out from the coast of Namibia, the directly measured ACAOD from 4STAR is slightly lower than the ACAOD product from MODIS. The peak ACAOD expected from MODIS AOD retrievals averaged over a long term along the routine diagonal flight track (peak of 0.5) was measured to be closer to coast in 2016 at about 1.5–4∘ E, with 4STAR ACAOD averages showing a peak of 0.42. When considering the full observation set over the SEA, by spatially binning each sampled AOD, we obtain a geographically representative mean ACAOD of 0.37. Vertical profiles of AOD showcase the variability in the altitude of the aerosol plume and its separation from the cloud top. We measured larger AOD at a high altitude near the coast than farther from the coast, while generally observing a larger vertical gap farther from the coast. Changes in AOD with altitude are correlated with carbon monoxide, a gas tracer of the biomass burning aerosol plume. Vertical extent of gaps between aerosol and cloud show a wide distribution, with a near-zero gap being most frequent. The gap distribution with longitude is observed to be largest at about 7∘ E, farther from coast than expected from previous studies.


2011 ◽  
Vol 4 (2) ◽  
pp. 131-141 ◽  
Author(s):  
C. Kittaka ◽  
D. M. Winker ◽  
M. A. Vaughan ◽  
A. Omar ◽  
L. A. Remer

Abstract. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is carried on the CALIPSO satellite and has acquired global aerosol profiles since June 2006. CALIPSO is flown in formation with the Aqua satellite as part of the A-train satellite constellation, so that a large number of coincident aerosol observations are available from CALIOP and the MODIS-Aqua instrument. This study compares column aerosol optical depth at 0.532 μm derived from CALIOP aerosol profiles with MODIS-Aqua 0.55 μm aerosol optical depth over the period June 2006 through August 2008. The study is based on the CALIOP Version 2 Aerosol Layer Product and MODIS Collection 5. While CALIOP is first and foremost a profiling instrument, this comparison of column aerosol optical depth provides insight into quality of CALIOP aerosol data. It is found that daytime aerosol optical depth from the CALIOP Version 2 product has only a small global mean bias relative to MODIS Collection 5. Regional biases, of both signs, are larger and biases are seen to vary somewhat with season. Good agreement between the two sensors in ocean regions with low cloudiness suggests that the selection of lidar ratios used in the CALIOP aerosol retrieval is sufficient to provide a regional mean AOD consistent with that retrieved from MODIS. Although differences over land are observed to be larger than over ocean, the bias between CALIOP and MODIS AOD on a regional-seasonal basis is found to be roughly within the envelope of the MODIS expected uncertainty over land and ocean. This work forms a basis for further comparisons using the recently released CALIOP Version 3 data.


2012 ◽  
Vol 12 (4) ◽  
pp. 10461-10492 ◽  
Author(s):  
Y. Xue ◽  
H. Xu ◽  
L. Mei ◽  
J. Guang ◽  
J. Guo ◽  
...  

Abstract. Agricultural biomass burning (ABB) in Central and East China occurs every year from May to October and peaks in June. The biomass burning event in June 2007 was very strong. During the period from 26 May to 16 June 2007, ABB occurred mainly in Anhui, Henan, Jiangsu and Shandong provinces. A comprehensive set of aerosol optical depth (AOD) data, produced by a merger of AOD product data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MIRS), is used to study the spatial and temporal distribution of agricultural biomass aerosols in Central and East China combining with ground observations from both AErosol RObotic NETwork (AERONET) and China Aerosol Remote Sensing NETwork (CARSNET) measurements. We compared merged AOD data with single-sensor single-algorithm AOD data (MODIS Dark Target AOD data, MODIS Deep Blue AOD data, SRAP-MODIS AOD data and MISR AOD data). In this comparison, we found merged AOD products can improve the quality of AOD products from single-sensor single-algorithm data sets by expanding the spatial coverage of the study area and keeping the statistical confidence in AOD parameters. There existed high correlation (0.8479) between the merged AOD data and AERONET measurements. Our merged AOD data make use of synergetic information conveyed in all of the available satellite data. The merged AOD data were used for the analysis of the biomass burning event from 26 May to 16 June 2007 together with meteorological data. The merged AOD products and the ground observations from China suggest that biomass burning in Central and East China has had great impact on AOD over China. Influenced by this ABB, the highest AOD value in Beijing on 12 June 2007 reached 5.71.


2015 ◽  
Vol 15 (19) ◽  
pp. 11067-11080 ◽  
Author(s):  
S. Groß ◽  
V. Freudenthaler ◽  
K. Schepanski ◽  
C. Toledano ◽  
A. Schäfler ◽  
...  

Abstract. Dual-wavelength Raman and depolarization lidar observations were performed during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment in Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust after transport across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths at 532 nm of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km in height. The contribution of the pure dust layer was about half of the total aerosol optical depth at 532 nm. The total dust contribution was about 50–70 % of the total aerosol optical depth at 532 nm. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio, wavelength-independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.


2019 ◽  
Author(s):  
Samuel E. LeBlanc ◽  
Jens Redemann ◽  
Connor Flynn ◽  
Kristina Pistone ◽  
Meloë Kacenelenbogen ◽  
...  

Abstract. The South-East Atlantic (SEA) is host to a climatologically significant biomass burning aerosol layer overlying marine stratocumulus. We present directly measured Above Cloud Aerosol Optical Depth (ACAOD) from the recent ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) airborne field campaign during August and September 2016. In our analysis, we use data from the Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) instrument and found an average ACAOD of 0.32 at 501 nm, with an average Ångström exponent (AE) of 1.71. The AE is much lower at 1.25 for the full column (including below cloud level aerosol), indicating the presence of large aerosol particles, likely marine aerosol, embedded within the vertical column. ACAOD is observed to be highest near coast at about 12° S, whereas its variability is largest at the southern edge of the average aerosol plume, as indicated by 12 years of MODIS observations. In comparison to MODIS derived ACAOD and long term fine-mode plume-average AOD, the directly-measured ACAOD from 4STAR is slightly lower than the ACAOD product from MODIS. The peak ACAOD expected from long term retrievals is measured to be closer to coast in 2016 at about 1.5°–4° W. By spatially binning the sampled AOD, we obtain a mean ACAOD of 0.37 for the SEA region. Vertical profiles of AOD showcase the variability of the altitude of the aerosol plume and its separation from cloud top. We measured larger AOD at high altitude near coast than farther from coast, while generally observing a larger vertical gap further from coast. Changes of AOD with altitude are correlated with a gas tracer of the biomass burning aerosol plume. Vertical extent of gaps between aerosol and cloud show a large distribution of extent, dominated by near zero gap. The gap distribution with longitude is observed to be largest at about 7° W, farther from coast than expected.


2003 ◽  
Vol 30 (20) ◽  
Author(s):  
T. F. Eck ◽  
B. N. Holben ◽  
J. S. Reid ◽  
N. T. O'Neill ◽  
J. S. Schafer ◽  
...  

2017 ◽  
Author(s):  
Ross M. Mitchell ◽  
Bruce W. Forgan ◽  
Susan K. Campbell

Abstract. Airborne particles or aerosols have long been recognized for their major contribution to uncertainty in climate change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in time-scale, totalling 207 station-years. Spectral decomposition shows that the time series can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its second and third harmonics. Their relative amplitudes and phase relationships leads to sawtooth-like waveforms sharply rising to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are used to separate the periodic and episodic components of the aerosol time series. Classification of the aerosol types is undertaken based on (a) the spectral variation of the optical depth expressed in the Ångström exponent, (b) the Fourier decomposition, and (c) the ratio of episodic to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes: Temperate, Arid, and Tropical. The Temperate class is characterised by a small amplitude periodic component, with an increasing episodic component toward the fire-prone Eucalypt forests of the south-east. Arid zone aerosol has a larger periodic component, with pronounced twin spring-summer peaks, and an increasing episodic component towards active dust source regions. Tropical aerosol is characterised by a very large periodic component due to seasonal biomass burning in the savanna belt, with significant interannual variability due to variation in the strength of the monsoon and its effect on the fuel source. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently small associated declining trends in mid-visible aerosol optical depth of between 0.001 to 0.002 per year, these trends are much larger than those projected to occur due to declining emissions of anthropogenic aerosols from the northern hemisphere. There is remarkable long-range coherence in the aerosol cycle across the continent, suggesting broadly similar source characteristics, including a possible role for inter-continental transport of biomass burning aerosol.


2013 ◽  
Vol 13 (9) ◽  
pp. 25013-25065 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
T. F. Eck ◽  
A. Smirnov ◽  
B. N. Holben

Abstract. Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88–0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.


Sign in / Sign up

Export Citation Format

Share Document