scholarly journals Aerosol observations and growth rates in the tropical tropopause layer

2012 ◽  
Vol 12 (1) ◽  
pp. 2355-2394
Author(s):  
D. A. Waddicor ◽  
G. Vaughan ◽  
T. W. Choularton ◽  
K. N. Bower ◽  
H. Coe ◽  
...  

Abstract. We present a case study of Aitken and accumulation mode aerosol observed downwind of the anvils of deep tropical thunderstorms. The measurements were made by condensation nuclei counters flown on the Egrett high-altitude aircraft from Darwin during the ACTIVE campaign, in monsoon conditions producing widespread convection over land and ocean. Maximum measured concentrations of aerosol in the size range 10–100 nm were 25 000 cm−3 STP. By calculating back-trajectories from the observations, and projecting on to infrared satellite images, the time since the air exited cloud was estimated. In this way a time scale of ~ 3–4 h was derived for the 10–100 nm aerosol concentration to reach its peak. We examine the hypothesis that the growth in aerosol concentrations can be explained by production of sulphuric acid from SO2 followed by particle nucleation and coagulation. Estimates of the sulphuric acid production rate show that the observations are only consistent with this hypothesis if the particles coagulate to sizes > 10 nm much more quickly than is suggested by current theory. Alternatively, other condensible gases (possibly organic) drive the growth of aerosol particles in the TTL.

2012 ◽  
Vol 12 (14) ◽  
pp. 6157-6172 ◽  
Author(s):  
D. A. Waddicor ◽  
G. Vaughan ◽  
T. W. Choularton ◽  
K. N. Bower ◽  
H. Coe ◽  
...  

Abstract. We present a case study of Aitken and accumulation mode aerosol observed downwind of the anvil of a deep tropical thunderstorm. The measurements were made by condensation nuclei counters flown on the Egrett high-altitude aircraft from Darwin during the ACTIVE campaign, in monsoon conditions producing widespread convection over land and ocean. Maximum measured concentrations of aerosol with diameter greater than 10 nm were 25 000 cm−3 (STP). By calculating back-trajectories from the observations, and projecting onto infrared satellite images, the time since the air exited cloud was estimated. In this way a time scale of about 3 hours was derived for the Aitken aerosol concentration to reach its peak. We examine the hypothesis that the growth in aerosol concentrations can be explained by production of sulphuric acid from SO2 followed by particle nucleation and coagulation. Estimates of the sulphuric acid production rate show that the observations are only consistent with this hypothesis if the particles coagulate to sizes >10 nm much more quickly than is suggested by current theory. Alternatively, other condensible gases (possibly organic) drive the growth of aerosol particles in the TTL.


2012 ◽  
Vol 12 (9) ◽  
pp. 25833-25885 ◽  
Author(s):  
F. Hasebe ◽  
Y. Inai ◽  
M. Shiotani ◽  
M. Fujiwara ◽  
H. Vömel ◽  
...  

Abstract. A network of balloon-born radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since late 1990s in the Tropical Pacific trying to capture the progress of dehydration for the air parcels advected horizontally in the Tropical Tropopause Layer (TTL). The analyses of this dataset are made on isentropes taking advantage of the conservative properties of tracers in adiabatic motion. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in the relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Further observational evidence is needed to confirm the credibility of such high values of RHice. The progress of TTL dehydration is reflected in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. The supersaturation exceeding the critical value of the homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on 360 and 365 K surfaces indicating that the cold trap dehydration is under progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) on 380 K on the other hand implies that this surface is not significantly cold for the advected air parcels to be dehydrated. Above 380 K, the cold trap dehydration would scarcely function while some moistening in turn occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.


2013 ◽  
Vol 13 (8) ◽  
pp. 4393-4411 ◽  
Author(s):  
F. Hasebe ◽  
Y. Inai ◽  
M. Shiotani ◽  
M. Fujiwara ◽  
H. Vömel ◽  
...  

Abstract. A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.


2008 ◽  
Vol 8 (23) ◽  
pp. 7325-7334 ◽  
Author(s):  
J. C. Laube ◽  
A. Engel ◽  
H. Bönisch ◽  
T. Möbius ◽  
D. R. Worton ◽  
...  

Abstract. The total stratospheric organic chlorine and bromine burden was derived from balloon-borne measurements in the tropics (Teresina, Brazil, 5°04´ S, 42°52´ W) in 2005. Whole air samples were collected cryogenically at altitudes between 15 and 34 km. For the first time, we report measurements of a set of 28 chlorinated and brominated substances in the tropical upper troposphere and stratosphere including ten substances with an atmospheric lifetime of less than half a year. The substances were quantified using pre-concentration techniques followed by Gas Chromatography with Mass Spectrometric detection. In the tropical tropopause layer at altitudes between 15 and 17 km we found 1.1–1.4% of the chlorine and 6–8% of the bromine to be present in the form of very short-lived organic compounds. By combining the data with tropospheric reference data and age of air observations the abundances of inorganic chlorine and bromine (Cly and Bry) were derived. At an altitude of 34 km we calculated 3062 ppt of Cly and 17.5 ppt of Bry from the decomposition of both long- and short-lived organic source gases. Furthermore we present indications for the presence of additional organic brominated substances in the tropical upper troposphere and stratosphere.


2008 ◽  
Vol 8 (3) ◽  
pp. 8491-8515 ◽  
Author(s):  
J. C. Laube ◽  
A. Engel ◽  
H. Bönisch ◽  
T. Möbius ◽  
D. R. Worton ◽  
...  

Abstract. The total stratospheric organic chlorine and bromine burden was derived from balloon-borne measurements in the tropics (Teresina, Brazil, 5°04´S, 42°52´W) in 2005. Whole air samples were collected cryogenically at altitudes between 15 and 34 km. For the first time, we report measurements of a set of 28 chlorinated and brominated substances in the tropical upper troposphere and stratosphere including ten substances with an atmospheric lifetime of less than half a year. The substances were quantified using pre-concentration techniques followed by Gas Chromatography with Mass Spectrometric detection. In the tropical tropopause layer at an altitude of 15.2 km we found 1.4% of the chlorine and 8% of the bromine to be present in the form of very short-lived compounds. By combining the data with tropospheric reference data and age of air observations the abundances of inorganic chlorine and bromine (Cly and Bry) were derived. At an altitude of 34 km we calculated 3062 ppt of Cly and 17.5 ppt of Bry from organic source gases. Furthermore we present indications for the presence of additional organic brominated substances in the tropical upper troposphere and stratosphere.


2022 ◽  
Vol 22 (1) ◽  
pp. 65-91
Author(s):  
Manuel Baumgartner ◽  
Christian Rolf ◽  
Jens-Uwe Grooß ◽  
Julia Schneider ◽  
Tobias Schorr ◽  
...  

Abstract. Laboratory measurements at the AIDA cloud chamber and airborne in situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low temperatures of the tropical tropopause layer, together with the number of ice crystals also the transport of water vapor into the stratosphere. Both the appearance of cirrus clouds and the amount of stratospheric water feed back to the radiative budget of the atmosphere. In order to explore the enhanced ice onset humidities, we re-examine the entire homogeneous ice nucleation process, ice onset, and nucleated crystal numbers, by means of a two-moment microphysics scheme embedded in the trajectory-based model (CLaMS-Ice) as follows: the well-understood and described theoretical framework of homogeneous ice nucleation includes certain formulations of the water activity of the freezing aerosol particles and the saturation vapor pressure of water with respect to liquid water. However, different formulations are available for both parameters. Here, we present extensive sensitivity simulations testing the influence of three different formulations for the water activity and four for the water saturation on homogeneous ice nucleation. We found that the number of nucleated ice crystals is almost independent of these formulations but is instead sensitive to the size distribution of the freezing aerosol particles. The ice onset humidities, also depending on the particle size, are however significantly affected by the choices of the water activity and water saturation, in particular at cold temperatures ≲205 K. From the CLaMS-Ice sensitivity simulations, we here provide combinations of water saturation and water activity formulations suitable to reproduce the new, enhanced freezing line.


2021 ◽  
Author(s):  
Manuel Baumgartner ◽  
Christian Rolf ◽  
Jens-Uwe Grooß ◽  
Julia Schneider ◽  
Tobias Schorr ◽  
...  

Abstract. Laboratory measurements at the AIDA cloud chamber and airborne in-situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop-line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low temperatures of the tropical tropopause layer, together with the number of ice crystals also the transport of water vapor into the stratosphere. Both, the appearance of cirrus clouds and the amount of stratospheric water feed back to the radiative budget of the atmosphere. In order to explore the enhanced ice onset humidities, we re-examine the entire homogeneous ice nucleation process, ice onset and nucleated crystal numbers, by means of a two-moment microphysics scheme embedded in the trajectory based model (CLaMS-Ice) as follows: the well-understood and described theoretical framework of homogeneous ice nucleation yet includes certain formulations of the water activity of the freezing aerosol particles and the saturation vapor pressure of water with respect to liquid water. However, different formulations are available for both parameters. Here, we present extensive sensitivity simulations testing the influence of three different formulations for the water activity and four for the water saturation on homogeneous ice nucleation. We found that the number of nucleated ice crystals is almost independent of these formulations but is instead sensitive to the size distribution of the freezing aerosol particles. The ice onset humidities, also depending on the particle size, are however significantly affected by the choices of the water activity and water saturation, in particular at cold temperatures  205 K. From the CLaMS-Ice sensitivity simulations, we here provide combinations of water saturation and water activity formulations suitable to reproduce the new, enhanced freezing line.


2014 ◽  
Vol 119 (9) ◽  
pp. 5299-5316 ◽  
Author(s):  
Rei Ueyama ◽  
Eric J. Jensen ◽  
Leonhard Pfister ◽  
Glenn S. Diskin ◽  
T. P. Bui ◽  
...  

Author(s):  
Emmanuel Skoufias ◽  
Eric Strobl ◽  
Thomas Tveit

AbstractThis article demonstrates the construction of earthquake and volcano damage indices using publicly available remote sensing sources and data on the physical characteristics of events. For earthquakes we use peak ground motion maps in conjunction with building type fragility curves to construct a local damage indicator. For volcanoes we employ volcanic ash data as a proxy for local damages. Both indices are then spatially aggregated by taking local economic exposure into account by assessing nightlight intensity derived from satellite images. We demonstrate the use of these indices with a case study of Indonesia, a country frequently exposed to earthquakes and volcanic eruptions. The results show that the indices capture the areas with the highest damage, and we provide overviews of the modeled aggregated damage for all provinces and districts in Indonesia for the time period 2004 to 2014. The indices were constructed using a combination of software programs—ArcGIS/Python, Matlab, and Stata. We also outline what potential freeware alternatives exist. Finally, for each index we highlight the assumptions and limitations that a potential practitioner needs to be aware of.


2021 ◽  
Vol 13 (14) ◽  
pp. 2786
Author(s):  
Roya Narimani ◽  
Changhyun Jun ◽  
Saqib Shahzad ◽  
Jeill Oh ◽  
Kyoohong Park

This paper proposes a novel hybrid method for flood susceptibility mapping using a geographic information system (ArcGIS) and satellite images based on the analytical hierarchy process (AHP). Here, the following nine multisource environmental controlling factors influencing flood susceptibility were considered for relative weight estimation in AHP: elevation, land use, slope, topographic wetness index, curvature, river distance, flow accumulation, drainage density, and rainfall. The weight for each factor was determined from AHP and analyzed to investigate critical regions that are more vulnerable to floods using the overlay weighted sum technique to integrate the nine layers. As a case study, the ArcGIS-based framework was applied in Seoul to obtain a flood susceptibility map, which was categorized into six regions (very high risk, high risk, medium risk, low risk, very low risk, and out of risk). Finally, the flood map was verified using real flood maps from the previous five years to test the model’s effectiveness. The flood map indicated that 40% of the area shows high flood risk and thus requires urgent attention, which was confirmed by the validation results. Planners and regulatory bodies can use flood maps to control and mitigate flood incidents along rivers. Even though the methodology used in this study is simple, it has a high level of accuracy and can be applied for flood mapping in most regions where the required datasets are available. This is the first study to apply high-resolution basic maps (12.5 m) to extract the nine controlling factors using only satellite images and ArcGIS to produce a suitable flood map in Seoul for better management in the near future.


Sign in / Sign up

Export Citation Format

Share Document