scholarly journals Boundary layer nucleation as a source of new CCN in savannah environment

2012 ◽  
Vol 12 (3) ◽  
pp. 8503-8531 ◽  
Author(s):  
L. Laakso ◽  
J. Merikanto ◽  
V. Vakkari, ◽  
H. Laakso ◽  
M. Kulmala ◽  
...  

Abstract. The South African savannah region is complex environment of air pollution and natural emissions influenced by a strong seasonal cycle in biomass burning and strong precipitation. However, the scarcity of long-term observations means that our knowledge of controlling aerosol processes in this environment is very poor. Here we use a new dataset of 18 months of aerosol observations to understand the factors that control aerosol properties, and in particular cloud condensation nuclei. We find that biomass burning produces a strong source of primary CCN-sized particles during the dry winter season. However, measured CCN-sized particle concentrations remain high during the wet summer season despite the lack of burning and high wet removal rates. We show that during the wet season, a substantial fraction of CCN-sized particles originate from boundary layer new particle formation, whereas primary sources dominate during the dry winter season. The large contribution of boundary layer nucleation to CCN concentrations during the wet season is found to be due to high particle formation and growth rates and low pre-existing particle concentration in the beginning of particle formation. Based on the estimated seasonal cycle of condensable sulphuric acid and organic vapours, higher growth rates during the wet season are attributed to vapours of biogenic origin. Global model results for this region have the same seasonal cycle in nuclei growth rates but the opposite cycle in particle formation rates, and both rates are much lower than observed. In contrast, the same model tends to capture the seasonal cycle in particle concentrations at many other global sites where nucleation is an important process. These results point to deficiencies in our understanding of biogenic emissions and the factors controlling nucleation and growth in such dynamic environments.

2013 ◽  
Vol 13 (4) ◽  
pp. 1957-1972 ◽  
Author(s):  
L. Laakso ◽  
J. Merikanto ◽  
V. Vakkari ◽  
H. Laakso ◽  
M. Kulmala ◽  
...  

Abstract. The South African savannah region is a complex environment of air pollution and natural emissions influenced by a strong seasonal cycle in biomass burning and strong precipitation. However, the scarcity of long-term observations means that the knowledge of controlling aerosol processes in this environment is limited. Here we use a recent dataset of 18 months of aerosol size distribution observations trying to understand the annual cycle of cloud condensation nuclei (CCN). Our observations show that the concentration of CCN-sized particles remains, in line with previous studies, high throughout the year with the highest concentrations during the dry winter and the lowest during the wet summer. During the wet season with reduced anthropogenic and biomass burning primary emissions, this pool of CCN is partly filled by boundary layer nucleation with subsequent growth. The enhanced importance of formation and growth during the wet season is addressed to increased biogenic activity together with enhanced free tropospheric removal decreasing the concentration of pre-existing CCN. During the dry season, while frequent new particle formation takes place, particle growth is reduced due to reduced condensing vapour concentrations. Thus in the dry season particles are not able to grow to sizes where they may act as CCN nearly as efficiently as during the wet season. The observations are compared to simulations by a global aerosol model GLOMAP. To our surprise, the global aerosol model utilized to explain the observations was not capable of re-producing the characteristics of particle formation and the annual CCN cycle, despite earlier good performance in predicting the particle concentrations in a number of diverse environments, including the South African savannah region. While the average yearly CCN concentrations of modelled CCN is close to observed concentrations, the characteristics of nucleation bursts and subsequent growth are not captured satisfactory by the model. Our sensitivity tests using different nucleation parameterizations and condensing organic vapour production rates show that neither of these is likely to explain the differences between observed and modelled nucleation and growth rates. A sensitivity study varying 28 modelling parameters indicates that the main uncertainties in the result are due to uncertainties in biomass burning emissions during the dry season, and anthropogenic sulphur emissions during the wet season, both in terms or emitted mass and particle sizes. The uncertainties appear to be mostly related to uncertainties in primary particle emissions, including the emissions variability not captured by monthly emission inventories. The results of this paper also highlights the fact that deficiencies in emissions estimates may result in deficiencies in particle production fluxes, while the end product such as modelled CCN concentration may be in line with observations.


2021 ◽  
Author(s):  
Marco A. Franco ◽  
Florian Ditas ◽  
Leslie Ann Kremper ◽  
Luiz A. T. Machado ◽  
Meinrat O. Andreae ◽  
...  

Abstract. New particle formation (NPF), referring to the nucleation of molecular clusters and their subsequent growth into the cloud condensation nuclei (CCN) size range, is a globally significant and climate-relevant source of atmospheric aerosols. Classical NPF exhibiting continuous growth from a few nanometers to the Aitken mode around 60–70 nm is widely observed in the planetary boundary layer (PBL) around the world, but not in central Amazonia. Here, classical NPF events are rarely observed in the PBL, but instead, NPF begins in the upper troposphere (UT), followed by downdraft injection of sub-50 nm (CN< 50) particles into the PBL and their subsequent growth. Central aspects of our understanding of these processes in the Amazon have remained enigmatic, however. Based on more than six years of aerosol and meteorological data from the Amazon Tall Tower Observatory (ATTO, Feb 2014 to Sep 2020), we analyzed the diurnal and seasonal patterns as well as meteorological conditions during 254 of such Amazonian growth events on 217 event days, which show a sudden occurrence of particles between 10 and 50 nm in the PBL, followed by their growth to CCN sizes. The occurrence of events was significantly higher during the wet season, with 88 % of all events from January to June, than during the dry season, with 12 % from July to December, probably due to differences in the condensation sink (CS), atmospheric aerosol load, and meteorological conditions. Across all events, a median growth rate (GR) of 5.2 nm h−1 and a median CS of 0.0011 s−1 were observed. The growth events were more frequent during the daytime (74 %) and showed higher GR (5.9 nm h−1) compared to nighttime events (4.0 nm h−1), emphasizing the role of photochemistry and PBL evolution in particle growth. About 70 % of the events showed a negative anomaly of the equivalent potential temperature (∆θ'e) – as a marker for downdrafts – and a low satellite brightness temperature (Tir) – as a marker for deep convective clouds – in good agreement with particle injection from the UT in the course of strong convective activity. About 30 % of the events, however, occurred in the absence of deep convection, partly under clear sky conditions, and with a positive ∆θ'e anomaly. Therefore, these events do not appear to be related to downdraft injection and suggest the existence of other currently unknown sources of the sub-50 nm particles.


2017 ◽  
Author(s):  
Daniela Wimmer ◽  
Stephany Buenrostro Mazon ◽  
Hanna Elina Manninen ◽  
Juha Kangasluoma ◽  
Alessandro Franchin ◽  
...  

Abstract. We investigated atmospheric new particle formation (NPF) in the Amazon rainforest using direct measurement methods. The occurrence of NPF on ground level in the Amazon region has not been observed previously in pristine conditions. Our measurements extended to two field sites and two tropical seasons (wet and dry). We measured the variability of air ion concentrations (0.8–20 nm) with an ion spectrometer between 2011 and 2014 at the T0t site and between February and October 2014 at the GoAmazon 2014/5 T3 site. The main difference between the two sites is their geographical location. Both sites are influenced by the Manaus pollution plume yet with different frequencies. T0t is reached by the pollution about 1 day in 7, where the T3 site is about 15 % of the time affected by Manaus. The sampling was performed at ground level at both sites. At T0t the instrumentation was located inside the rainforest, whereas the T3 site was an open pasture site. T0t site is mostly parallel wind to Manaus, whereas T3 site is downwind of Manaus. No NPF events were observed inside the rainforest canopy (site T0t) at ground level during the period Sep 2011–Jan 2014. However, rain-induced ion and particle bursts (hereafter, “rain events”) occurred frequently (306/529 days) at T0t throughout the year but most frequently between January and April (wet season). Rain events increased nucleation mode (2–20 nm) particle and ion concentrations on the order of 104 cm−3. We observed 8 NPF events at the pasture site during the wet season. We calculated the growth rates (GR) and formation rates of neutral particles and ions for the size ranges 2–3 nm, 3–7 nm and 7–20 nm using the ion spectrometer data. One explanation for the absence of new particle formation events at the T0t site could be a combination of cleaner airmasses and the rainforest canopy acting as an ‘umbrella’, hindering the mixing of the airmasses down to the measurement height. Neutral particle growth rates in the 3–7 nm regime showed two phenomena. Growth rates were either about 2 nm h−1 or about 14 nm h−1. There was no clear difference in the sulfuric acid concentrations for NPF days vs days without NPF. Back trajectory calculations show different airmass origin for the NPF days compared to non NPF days.


2006 ◽  
Vol 6 (10) ◽  
pp. 2911-2925 ◽  
Author(s):  
D. Chand ◽  
P. Guyon ◽  
P. Artaxo ◽  
O. Schmid ◽  
G. P. Frank ◽  
...  

Abstract. As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, and in the boundary layer (BL) and free troposphere (FT) during the dry season are discussed in this article. Carbon monoxide (CO) is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 545 nm), PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high PM2.5 (225 μg m−3), σs (1435 Mm−1), aerosol optical depth at 500 nm (3.0), and CO (3000 ppb). A few rainy episodes reduced the PM2.5, number concentration (CN) and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1617 m during the burning season. This is confirmed by aircraft profiles. The average mass scattering and absorption efficiencies (545 nm) for small particles (diameter Dp<1.5 μm) at surface level are found to be 5.0 and 0.33 m2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at 545 nm) for submicron aerosols at the surface is 0.92±0.02. The light scattering by particles (Δσs/Δ CN) increase 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.


2020 ◽  
Author(s):  
Xuemei Wang ◽  
Daniel Grosvenor ◽  
Hamish Gordon ◽  
Meinrat O. Andreae ◽  
Ken Carslaw

&lt;p&gt;It has been estimated that over 50% of the present-day global low-level cloud condensation nuclei (CCN) are formed from new particle formation (NPF), and that this process has a substantial effect on the radiative properties of shallow clouds (Gordon et al. 2017). In contrast, we have a very limited understanding of how NPF affects deep convective clouds. Deep clouds could interact strongly with NPF because they extend into the high free troposphere where most new particles are formed, and they are responsible for most of the vertical transport of the nucleating vapours. Andreae et al. (2018) hypothesised from ACRIDICON-CHUVA campaign that organic gas molecules are transported by deep convection to the upper troposphere where they are oxidised and produce new particles, which are then be entrained into the boundary layer and grow to CCN-relevent sizes.&lt;/p&gt;&lt;p&gt;Here we study the interaction of deep convection and NPF using the United Kingdom Chemistry and Aerosols (UKCA) model coupled with the Cloud-AeroSol Interacting Microphyics (CASIM) embedded in the regional configuration of UK Met Office Hadley Centre Global Environment Model (HadGEM3). We simulate several days over a 1000 km region of the Amazon at 4 km resolution. We then compare the regional model, which resolves cloud up- and downdrafts, with the global model with parameterised convection and low resolution.&lt;/p&gt;&lt;p&gt;Our simulations highlight three findings. Firstly, solely using a binary H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;-H&lt;sub&gt;2&lt;/sub&gt;O nucleation mechanism strongly underestimates total aerosol concentrations compared to observations by a factor of 1.5-8 below 3 km over the Amazon. This points to the potential role of an additional nucleation mechanism, most likely involving biogenic compounds that occurs throughout more of the free troposphere. Secondly, deep convection transports insoluble gases such as DMS and monoterpenes vertically but not SO&lt;sub&gt;2&lt;/sub&gt;&amp;#160;or H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;. The time scale for DMS oxidation (~ 1 day) is much longer than for monoterpene (1-2 hours), which points to the importance of simulating biogenic nucleation over the Amazon in a cloud-resolving model, while lower-resolution global models may adequately capture DMS effects on H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt; nucleation. Finally, we also examine the Andreae et al (2018) hypothesis of aerosol supply to the boundary layer by quantifying cloud-free and cloudy up- and downdraft transport. The transport of newly formed aerosols into the boundary layer is 8 times greater in cloud-free regions than in the clouds, but these transport processes are of similar magnitude for large aerosols.&lt;/p&gt;


2010 ◽  
Vol 10 (6) ◽  
pp. 2975-2999 ◽  
Author(s):  
G. McFiggans ◽  
C. S. E. Bale ◽  
S. M. Ball ◽  
J. M. Beames ◽  
W. J. Bloss ◽  
...  

Abstract. This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques. Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with the highest concentrations of ultrafine particles growing to the largest sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.


2005 ◽  
Vol 5 (4) ◽  
pp. 4373-4406 ◽  
Author(s):  
D. Chand ◽  
P. Guyon ◽  
P. Artaxo ◽  
O. Schmid ◽  
G. P. Frank ◽  
...  

Abstract. As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, boundary layer (BL) and free troposphere (FT) during the dry season are discussed in this article. Carbon monoxide (CO) is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 550 nm), PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high mass loadings (PM2.5=200 µgm−3), σs (1400 Mm−1), aerosol optical depth at 500 nm (3.0), and CO (3000 ppb). A few rainy episodes reduced the aerosol mass loading, number concentration (CN) and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1660 m during the burning season. The average mass scattering and absorption efficiencies (532 nm) for small particles (diameter Dp<1.5 µm) at surface level are found to be 5.3 and 0.42 m2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at ~540 nm) for submicron aerosols at the surface (0.92±0.02) is significantly higher than reported previously. The scattering efficiency (dσs/dCN) of particles increases 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.


2011 ◽  
Vol 11 (4) ◽  
pp. 13193-13228 ◽  
Author(s):  
K. Neitola ◽  
E. Asmi ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
T. Raatikainen ◽  
...  

Abstract. A fraction of the Himalayan aerosols originate from secondary sources, which are currently poorly quantified. To clarify the climatic importance of regional secondary particle formation at Himalayas, data from 2005 to 2010 of continuous aerosol measurements at a high-altitude (2180 m) Indian Himalayan site, Mukteshwar, were analyzed. For this period, the days were classified, and the particle formation and growth rates were calculated for clear new particle formation (NPF) event days. The NPF events showed a pronounced seasonal cycle. The frequency of the events peaked in spring, when the ratio between event and non-event days was 53 %, whereas the events were truly sporadic on any other seasons. The annual mean particle formation and growth rates were 0.40 cm−3 s−1 and 2.43 nm h−1, respectively. The clear annual cycle was found to be mainly controlled by the seasonal evolution of the Planetary Boundary Layer (PBL) height together with local meteorological conditions. Spring NPF events were connected with increased PBL height, and therefore characterised as boundary layer events, while the rare events in other seasons represented lower free tropospheric particle formation.


2008 ◽  
Vol 8 (4) ◽  
pp. 16291-16333 ◽  
Author(s):  
J. R. Pierce ◽  
P. J. Adams

Abstract. The indirect effect of aerosols on climate is highly uncertain and limits our ability to assess anthropogenic climate change. The foundation of this uncertainty is uncertainty in the number of cloud condensation nuclei (CCN), which itself stems from uncertainty in aerosol nucleation, primary emission and growth rates. In this paper, we use a global general circulation model with aerosol microphysics to assess how the uncertainties in aerosol nucleation, emission and growth rates affect our prediction of CCN(0.2%) concentrations. Using two nucleation rate parameterizations that differ in globally averaged nucleation rate by 106, the tropospheric average CCN(0.2%) concentrations vary by 17% and the boundary layer average vary by 12%. This sensitivity of tropospheric average CCN(0.2%) to the nucleation parameterizations increases to 33% and 20% when the total primary emissions are reduced by a factor of 3 and the SOA condensation rates are increased by a factor of 3.5, respectively. These results show that it is necessary to understand better global nucleation rates when determining CCN concentrations. When primary emissions rates are varied by a factor of 3 while using the slower nucleation rate parameterization, tropospheric average CCN(0.2%) concentrations also vary by 17%, but boundary layer average vary by 40%. Using the faster nucleation rate parameterization, these changes drop to 3% and 22%, respectively. These results show the importance of reducing uncertainties in primary emissions, which appear from these results to be somewhat more important for CCN than the much larger uncertainties in nucleation. These results also show that uncertainties in nucleation and primary emissions are more important when sufficient condensable material is available to grow them to CCN sizes. The percent change in CCN(0.2%) concentration between pre-industrial times and present day does not depend greatly on the nucleation rate parameterization used for our base case scenarios; however, because other factors, such as primary emissions and SOA, are uncertain in both time periods, this may be a coincidence.


2009 ◽  
Vol 9 (6) ◽  
pp. 26421-26489 ◽  
Author(s):  
G. McFiggans ◽  
C. S. E. Bale ◽  
S. M. Ball ◽  
J. M. Beames ◽  
W. J. Bloss ◽  
...  

Abstract. This paper presents a summary of the measurements that were made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques. Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with higher concentrations of ultrafine particles growing to much larger sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.


Sign in / Sign up

Export Citation Format

Share Document