scholarly journals Hygroscopic properties of organic aerosol particles emitted in the marine atmosphere

2013 ◽  
Vol 13 (5) ◽  
pp. 11919-11969 ◽  
Author(s):  
A. Wonaschütz ◽  
M. Coggon ◽  
A. Sorooshian ◽  
R. Modini ◽  
A. A. Frossard ◽  
...  

Abstract. During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced and emitted into the marine atmosphere from aboard the research vessel R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, hygroscopic growth factors (GFs) at a relative humidity (RH) of 92% were low, but increased at higher plume ages: from 1.05 to 1.09 for 30 nm and from 1.05 to 1.1 for 150 nm dry size (contrasted by an average marine background GF of 1.6). Simultaneously, ratios of oxygen to carbon (O:C) increased from < 0.001 to 0.2, water-soluble organic mass (WSOM) concentrations increased from 2.42 to 4.96 μg m−3, and organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). New particles were produced in large quantities (several 10 000 cm−3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07–0.88%. High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions. An average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, a GF of 1.04 for an organic mass fraction of 0.35.

2013 ◽  
Vol 13 (19) ◽  
pp. 9819-9835 ◽  
Author(s):  
A. Wonaschütz ◽  
M. Coggon ◽  
A. Sorooshian ◽  
R. Modini ◽  
A. A. Frossard ◽  
...  

Abstract. During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs): between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH) of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm−3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C) and water-soluble organic mass (WSOM) increased with plume age: from < 0.001 to 0.2, and from 2.42 to 4.96 μg m−3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.


2009 ◽  
Vol 9 (12) ◽  
pp. 3999-4009 ◽  
Author(s):  
M. D. Petters ◽  
H. Wex ◽  
C. M. Carrico ◽  
E. Hallbauer ◽  
A. Massling ◽  
...  

Abstract. We examine the hygroscopic properties of secondary organic aerosol particles generated through the reaction of α-pinene and ozone using a continuous flow reaction chamber. The water activity versus composition relationship is calculated from measurements of growth factors at relative humidities up to 99.6% and from measurements of cloud condensation nuclei activity. The observed relationships are complex, suggesting highly non-ideal behavior for aerosol water contents at relative humidities less than 98%. We present two models that may explain the observed water activity-composition relationship equally well. The first model assumes that the aerosol is a pseudo binary mixture of infinitely water soluble compounds and sparingly soluble compounds that gradually enter the solution as dilution increases. The second model is used to compute the Gibbs free energy of the aerosol-water mixture and shows that the aerosol behaves similarly to what can be expected for single compounds that contain a certain fraction of oxygenated and non-polar functional groups.


2008 ◽  
Vol 8 (6) ◽  
pp. 20839-20867 ◽  
Author(s):  
M. D. Petters ◽  
H. Wex ◽  
C. M. Carrico ◽  
E. Hallbauer ◽  
A. Massling ◽  
...  

Abstract. We examine the hygroscopic properties of secondary organic aerosol particles generated through the reaction of alpha-pinene and ozone using a continuous flow reaction chamber. The water activity versus composition relationship is calculated from measurements of growth factors at relative humidities up to 99.6% and from measurements of cloud condensation nuclei activity. The observed relationships are complex, suggesting highly non-ideal behavior for aerosol water contents at relative humidities less than 98%. We present two models that may explain the observed water activity-composition relationship equally well. The first model assumes that the aerosol is a pseudo binary mixture of infinitely water soluble compounds and sparingly soluble compounds that gradually enter the solution as dilution increases. The second model is used to compute the Gibbs free energy of the aerosol-water mixture and shows that the aerosol behaves similarly to what can be expected for single compounds that contain a certain fraction of oxygenated and non-polar functional groups.


2018 ◽  
Author(s):  
Liqing Hao ◽  
Olga Garmash ◽  
Mikael Ehn ◽  
Pasi Miettinen ◽  
Paola Massoli ◽  
...  

Abstract. Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols-Effects on Clouds and Climate) campaign was conducted during the spring 2014 at SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase of LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or condensation of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the night time, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase of SVOOA mass correlated well with the calculated increase of condensed HOMs (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the night time.


2011 ◽  
Vol 11 (22) ◽  
pp. 11335-11350 ◽  
Author(s):  
M. Martin ◽  
R. Y.-W. Chang ◽  
B. Sierau ◽  
S. Sjogren ◽  
E. Swietlicki ◽  
...  

Abstract. We present an aerosol – cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble (κorg=0.02), leading to a mean total κ, κtot, of 0.33 ± 0.13. However, several settings led to closure and κorg=0.2 is found to be an upper limit at 0.1% supersaturation. κorg≤0.2 leads to a κtot range of 0.33 ± 013 to 0.50 ± 0.11. Thus, the organic material ranges from being sparingly soluble to effectively insoluble. These results suggest that an increase in organic mass fraction in particles of a certain size would lead to a suppression of the Arctic CCN activity.


2013 ◽  
Vol 13 (13) ◽  
pp. 6493-6506 ◽  
Author(s):  
L. Pfaffenberger ◽  
P. Barmet ◽  
J. G. Slowik ◽  
A. P. Praplan ◽  
J. Dommen ◽  
...  

Abstract. A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm−3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m−3 at an OH exposure of 4 × 107 cm−3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm−3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate ambient aerosol properties.


2008 ◽  
Vol 8 (4) ◽  
pp. 16789-16817
Author(s):  
S. P. Hersey ◽  
A. Sorooshian ◽  
S. M. Murphy ◽  
R. C. Flagan ◽  
J. H. Seinfeld

Abstract. We have conducted the first closure study to couple high-resolution aerosol mass spectrometer (AMS) composition data with size-resolved, multiple-RH, high-time-resolution hygroscopic growth factor (GF) measurements from the differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). These data were collected off the coast of Central California during seven of the 16 flights carried out during the MASE-II field campaign in July 2007. Two of the seven flights were conducted in airmasses that originated over the continental United States. These flights exhibited elevated organic volume fractions (VForganic=0.46±0.22, as opposed to 0.24±0.18 for all other flights), corresponding to significantly suppressed GFs at high RH (1.61±0.14 at 92% RH, as compared with 1.91±0.07 for all other flights), more moderate GF suppression at intermediate RH (1.53±0.10 at 85%, compared with 1.58±0.08 for all other flights, and no measurable GF suppression at low RH (1.31±0.06 at 74%, compared with 1.31±0.07 for all other flights). Organic loadings were slightly elevated in above-cloud aerosols, as compared with below-cloud aerosols, and corresponded to a similar trend of significantly suppressed GF at high RH, but more moderate impacts at lower values of RH. A hygroscopic closure based on a volume-weighted mixing rule provided excellent agreement with DASH-SP measurements (R2=0.79). Minimization of root mean square error between observations and predictions indicated mission-averaged organic GFs of 1.20, 1.43, and 1.46 at 74, 85, and 92% RH, respectively. These values agree with previously reported values for water-soluble organics such as dicarboxylic and multifunctional acids, and correspond to a highly oxidized, presumably water-soluble, organic fraction (O:C=0.92±0.33). Finally, a backward stepwise linear regression revealed that, other than RH, the most important predictor for GF is VForganic, indicating that a simple emperical model relating GF, RH, and the relative abundance of organic material can provide accurate predictions of hygroscopic growth in the marine atmosphere.


2008 ◽  
Vol 8 (3) ◽  
pp. 10415-10479 ◽  
Author(s):  
A. Sorooshian ◽  
S. M. Murphy ◽  
S. Hersey ◽  
H. Gates ◽  
L. T. Padro ◽  
...  

Abstract. We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California) on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%), followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS) and via mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. Kinetic limitations due to hydrophobic organic material are shown to have likely suppressed droplet growth. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN) increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR) mixing rule. Representative values for a parameterization treating particle water uptake in both the sub- and supersaturated regimes are reported for incorporation into atmospheric models.


2009 ◽  
Vol 9 (4) ◽  
pp. 16683-16714 ◽  
Author(s):  
L. Poulain ◽  
Z. Wu ◽  
M. D. Petters ◽  
H. Wex ◽  
E. Hallbauer ◽  
...  

Abstract. The influence of varying levels of water mixing ratio, r, during the formation of secondary organic aerosol (SOA) from the ozonolysis of α-pinene on the SOA hygroscopicity and volatility was investigated. The reaction proceeded and aerosols were generated in a mixing chamber and the hygroscopic characteristics of the SOA were determined with LACIS (Leipzig Aerosol Cloud Interaction Simulator) and a Cloud Condensation Nuclei counter (CCNc). In parallel, a High-Resolution Time-of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) located downstream of a thermodenuder (TD) sampling from the mixing chamber, to collect mass spectra of particles from the volatile and non-volatile fractions of the SOA. Results showed that both hygroscopic growth and the volatile fraction of the SOA increased with increases in r inside the mixing chamber during SOA generation. An effective density of 1.40 g cm−3 was observed for the generated SOA when the reaction proceeded with r>1 g kg−1. Changes in the concentrations of the fragment CO2+ and the sum of CxHyOz+ (short name CHO) and CxHy+ (short name CH) fragments as measured by the HR-ToF-AMS were used to estimate changes in the oxidation level of the SOA with reaction conditions, using the ratios CO2+ to CH and CHO to CH. Under humid conditions, both ratios increased, corresponding to the presence of more oxygenated functional groups (i.e., carboxylic groups). This result is consistent with the α-pinene ozonolysis mechanisms which suggest that water interacts with the stabilized Criegee intermediate. The volatility and the hygroscopicity results show that SOA generation via ozonolysis of α-pinene in the presence of water vapour (r<16.884 g kg−1) leads to the formation of more highly oxygenated compounds that are more hygroscopic and more volatile than compounds formed under dry conditions.


2007 ◽  
Vol 7 (1) ◽  
pp. 1941-1967 ◽  
Author(s):  
R. K. Pathak ◽  
A. A. Presto ◽  
T. E. Lane ◽  
C. O. Stanier ◽  
N. M. Donahue ◽  
...  

Abstract. Existing parameterizations tend to underpredict the α-pinene aerosol mass fraction (AMF) by a factor of 2–5 at low organic aerosol concentrations (<5 μg m−3). A wide range of smog chamber results obtained at various conditions (low/high NOx, presence/absence of UV radiation, dry/humid conditions, and temperatures ranging from 15–40°C) collected by various research teams during the last decade are used to derive new parameterizations of the SOA formation from α-pinene ozonolysis. Parameterizations are developed by fitting experimental data to a basis set of saturation concentrations (from 10−2 to 104 μg m−3) using an absorptive equilibrium partitioning model. Separate parameterizations for α-pinene SOA mass fractions are developed for: 1) Low NOx, dark, and dry conditions, 2) Low NOx, UV, and dry conditions, 3) Low NOx, dark, and high RH conditions, 4) High NOx, dark, and dry conditions, 5) High NOx, UV, and dry conditions. According to the proposed parameterizations the α-pinene SOA mass fractions in an atmosphere with 5 μg m−3 of organic aerosol range from 0.032 to 0.1 for reacted α-pinene concentrations in the 1 ppt to 5 ppb range.


Sign in / Sign up

Export Citation Format

Share Document