scholarly journals The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals

2013 ◽  
Vol 13 (5) ◽  
pp. 12725-12742 ◽  
Author(s):  
D. Painemal ◽  
P. Minnis ◽  
S. Sun-Mack

Abstract. The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES Edition 4 algorithms are averaged at the CERES footprint resolution (~ 20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8 – re2.1 differences are positive (< 1 μm) for homogeneous scenes (Hσ < 0.2) and LWP > 50 g m−2, and negative (up to −4 μm) for larger Hσ. Thus, re3.8 – re2.1 differences are more likely to reflect biases associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

2013 ◽  
Vol 13 (19) ◽  
pp. 9997-10003 ◽  
Author(s):  
D. Painemal ◽  
P. Minnis ◽  
S. Sun-Mack

Abstract. The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8–re2.1 differences are positive (<1 μm) for homogeneous scenes (Hσ < 0.2) and LWP > 45 gm−2, and negative (up to −4 μm) for larger Hσ. While re3.8–re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences – particularly evinced in mean regional maps – are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.


2015 ◽  
Vol 8 (4) ◽  
pp. 4307-4323
Author(s):  
P. Wu ◽  
X. Dong ◽  
B. Xi

Abstract. In this study, we retrieve and document drizzle properties, and investigate the impact of drizzle on cloud property retrievals from ground-based measurements at the ARM Azores site from June 2009 to December 2010. For the selected cloud and drizzle samples, the drizzle occurrence is 42.6% with a maximum of 55.8% in winter and a minimum of 35.6% in summer. The annual means of drizzle liquid water path LWPd, effective radius rd, and number concentration Nd for the rain (virga) samples are 5.48 (1.29) g m−2, 68.7 (39.5) μm, and 0.14 (0.38) cm−3. The seasonal mean LWPd values are less than 4% of the MWR-retrieved LWP values. The annual mean differences in cloud-droplet effective radius with and without drizzle are 0.12 and 0.38 μm, respectively, for the virga and rain samples. Therefore, we conclude that the impact of drizzle on cloud property retrievals is insignificant at the ARM Azores site.


2009 ◽  
Vol 9 (12) ◽  
pp. 4039-4052 ◽  
Author(s):  
I. Sandu ◽  
J.-L. Brenguier ◽  
O. Thouron ◽  
B. Stevens

Abstract. Large-Eddy Simulations (LES) are performed to examine the impact of hygroscopic aerosols on the diurnal cycle of marine stratocumulus clouds, under varying meteorological forcing conditions. When the cloud condensation nuclei concentration increase is sufficient to inhibit drizzle formation in the cloud layer, the precipitating and the non-precipitating cloud layers exhibit contrasting evolutions, with noticeable differences in liquid water path. Aerosol-induced modifications of the droplet sedimentation and drizzle precipitation result in noticeable changes of the entrainment velocity at cloud top, but also in significant changes of the vertical stratification in the boundary layer. This set of simulations is then used to evaluate whether a model which does not explicitly represent the effects of the interactions occurring within the boundary layer on its vertical stratification (i.e. such as a mixed-layer model) is capable of reproducing at least the sign, if not the amplitude, of these aerosol impacts on the liquid water path. It is shown that the evolution of the vertical structure is key to the responses we simulate, and must be considered in bulk models that wish to predict the impact of aerosol perturbations on the radiative properties of stratocumulus-topped boundary layers.


2011 ◽  
Vol 11 (6) ◽  
pp. 2893-2901 ◽  
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations, homogeneity parameters used in models based on their ratio, and the probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer (MODIS) are estimated globally as function of averaging scale varying from 5 to 500 km. The properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations and generalized flatness are compared to predictions for turbulent systems. Analytical expressions are identified that fit best to each observed PDF. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2019 ◽  
Author(s):  
Johannes Mülmenstädt ◽  
Edward Gryspeerdt ◽  
Marc Salzmann ◽  
Po-Lun Ma ◽  
Sudhakar Dipu ◽  
...  

Abstract. Using the method of offline radiative transfer modelling within the partial radiative perturbations (PRP) approach, the effective radiative forcing (ERF) by aerosol–cloud interactions (ACI) in the ECHAM-HAMMOZ aerosol climate model is decomposed into a radiative forcing by anthropogenic cloud droplet number change and adjustments of the liquid water path and cloud fraction. The simulated radiative forcing and liquid water path adjustment are of approximately equal magnitude at −0.52 W m−2 and −0.53 W m−2, respectively, while the cloud fraction adjustment is somewhat weaker at −0.31 W m−2 (constituting 38 %, 39 %, and 23 % of the total ERFaci, respectively); geographically, all three ERF components in the simulation peak over China, the subtropical eastern ocean boundaries, the northern Atlantic and Pacific Ocean, Europe, and eastern North America (in order of prominence). Spatial correlations indicate that the temporal-mean liquid water path adjustment is proportional to the temporal-mean radiative forcing, while the relationship between cloud fraction adjustment and radiative forcing is less direct. While the estimate of warm-cloud ACI is relatively insensitive to the treatment of ice and mixed-phase cloud overlying warm cloud, there are indications that more restrictive treatments of ice in the column result in a low bias in the estimated magnitude of the liquid water path adjustment and a high bias in the estimated magnitude of the droplet number forcing. Since the present work is the first PRP decomposition of the aerosol ERF into RFaci and fast cloud adjustments, idealized experiments are conducted to provide evidence that the PRP results are accurate. The experiments show that using low-frequency (daily or monthly) time-averaged model output of the cloud property fields underestimates the ERF, but 3-hourly mean output is sufficiently frequent.


2010 ◽  
Vol 10 (9) ◽  
pp. 21303-21321
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations and Probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer are estimated globally as function of averaging scale, varied from 5 to 500 km. These properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Analytical expressions are identified that fit best to each observed PDF. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations is compared to predictions for turbulent systems. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2019 ◽  
Vol 19 (24) ◽  
pp. 15415-15429 ◽  
Author(s):  
Johannes Mülmenstädt ◽  
Edward Gryspeerdt ◽  
Marc Salzmann ◽  
Po-Lun Ma ◽  
Sudhakar Dipu ◽  
...  

Abstract. Using the method of offline radiative transfer modeling within the partial radiative perturbation (PRP) approach, the effective radiative forcing by aerosol–cloud interactions (ERFaci) in the ECHAM–HAMMOZ aerosol climate model is decomposed into a radiative forcing by anthropogenic cloud droplet number change and adjustments of the liquid water path and cloud fraction. The simulated radiative forcing by anthropogenic cloud droplet number change and liquid water path adjustment are of approximately equal magnitude at −0.52 and −0.53 W m−2, respectively, while the cloud-fraction adjustment is somewhat weaker at −0.31 W m−2 (constituting 38 %, 39 %, and 23 % of the total ERFaci, respectively); geographically, all three ERFaci components in the simulation peak over China, the subtropical eastern ocean boundaries, the northern Atlantic and Pacific oceans, Europe, and eastern North America (in order of prominence). Spatial correlations indicate that the temporal-mean liquid water path adjustment is proportional to the temporal-mean radiative forcing, while the relationship between cloud-fraction adjustment and radiative forcing is less direct. While the estimate of warm-cloud ERFaci is relatively insensitive to the treatment of ice and mixed-phase cloud overlying warm cloud, there are indications that more restrictive treatments of ice in the column result in a low bias in the estimated magnitude of the liquid water path adjustment and a high bias in the estimated magnitude of the droplet number forcing. Since the present work is the first PRP decomposition of the aerosol effective radiative forcing into radiative forcing and rapid cloud adjustments, idealized experiments are conducted to provide evidence that the PRP results are accurate. The experiments show that using low-frequency (daily or monthly) time-averaged model output of the cloud property fields underestimates the ERF, but 3-hourly mean output is sufficiently frequent.


2010 ◽  
Vol 10 (21) ◽  
pp. 10639-10654 ◽  
Author(s):  
C. S. Bretherton ◽  
R. Wood ◽  
R. C. George ◽  
D. Leon ◽  
G. Allen ◽  
...  

Abstract. Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx) are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a~transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K), sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with accumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m) and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important. Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore. Winds from ECMWF and NCEP operational analyses have an rms difference of only 1 m s−1 from collocated airborne leg-mean observations in the boundary layer and 2 m s−1 above the boundary layer. This supports the use of trajectory analysis for interpreting REx observations. Two-day back-trajectories from the 20° S transect suggest that eastward of 75° W, boundary layer (and often free-tropospheric) air has usually been exposed to South American coastal aerosol sources, while at 85° W, neither boundary-layer or free-tropospheric air has typically had such contact.


2015 ◽  
Vol 54 (8) ◽  
pp. 1809-1825 ◽  
Author(s):  
Yaodeng Chen ◽  
Hongli Wang ◽  
Jinzhong Min ◽  
Xiang-Yu Huang ◽  
Patrick Minnis ◽  
...  

AbstractAnalysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.


Sign in / Sign up

Export Citation Format

Share Document