scholarly journals Surface sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data

2013 ◽  
Vol 13 (11) ◽  
pp. 30349-30405 ◽  
Author(s):  
Q. Shi ◽  
S. Liang

Abstract. Estimations from meteorological stations indicate that the surface sensible heat flux over the Tibetan Plateau (TP) has been decreasing continuously since 1980s, and modeling studies suggest that such changes are likely linked to the weakening of the East Asian Monsoon through exciting Rossby wave trains. However, the spatial and temporal variations in the surface sensible and latent heat fluxes over the entire TP remain unknown. This study aims to characterize the monthly surface sensible and latent heat fluxes at 0.5° over the TP from 1984 to 2007 by synthesizing multiple data sources including ground measurements, reanalysis products, and remote sensing products. The root mean square errors (RMSEs) from cross-validation are 11.1 W m−2 and 17.8 W m−2 for the monthly fused sensible and latent heat fluxes, respectively. The fused sensible and latent heat flux anomalies are consistent with those estimated from meteorological stations, and the uncertainties of the fused data are also discussed. The annual sensible heat flux over the TP is shown to be decreasing by −1.1 W m−2 deacade−1 with dominant decreasing in summer (−3.9 W m−2 deacade−1), while the latent heat flux shows a decrease (increase) in spring (autumn) but at a magnitude less than that of the sensible heat flux. Such decreased tendency of the fused sensible and latent heat flux over the TP is consistent to the weakened East Asian Monsoon as well as the solar dimming. The associations among sensible and latent heat fluxes and the related surface anomalies such as mean temperature, temperature range, snow cover, and Normalized Difference Vegetation Index (NDVI) in addition to atmospheric anomalies such as cloud cover and water vapor show seasonal dependence, suggest that the land–biosphere–atmosphere interactions over the TP could display nonuniform feedbacks to the climate changes. It would be interesting to disentangle the drivers and responses of the surface sensible and latent heat flux anomalies over the TP in future research from evidences of modeling results.

2014 ◽  
Vol 14 (11) ◽  
pp. 5659-5677 ◽  
Author(s):  
Q. Shi ◽  
S. Liang

Abstract. Estimations from meteorological stations over the Tibetan Plateau (TP) indicate that since the 1980s the surface-sensible heat flux has been decreasing continuously, and modeling studies suggest that such changes are likely linked to the weakening of the East Asian Monsoon through exciting Rossby wave trains. However, the spatial and temporal variations in the surface-sensible and latent heat fluxes over the entire TP remain unknown. This study aims to characterize the spatial and seasonal variability of the surface-sensible and latent heat fluxes at 0.5° over the TP from 1984 to 2007 by synthesizing multiple data sources including ground measurements, reanalysis products, and remote-sensing products. The root mean square errors (RMSEs) from cross validation are 14.3 Wm−2 and 10.3 Wm−2 for the monthly fused sensible and latent heat fluxes, respectively. The fused sensible and latent heat-flux anomalies are consistent with those estimated from meteorological stations, and the uncertainties of the fused data are also discussed. The associations among the fused sensible and latent heat fluxes and the related surface anomalies such as mean temperature, temperature range, snow cover, and normalized difference vegetation index (NDVI) in addition to atmospheric anomalies such as cloud cover and water vapor show seasonal dependence, suggest that the land–biosphere–atmosphere interactions over the TP could display nonuniform feedbacks to the climate changes. It would be interesting to disentangle the drivers and responses of the surface-sensible and latent heat-flux anomalies over the TP in future research from evidences of modeling results.


2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


2019 ◽  
Vol 11 (24) ◽  
pp. 2899
Author(s):  
Nan Ge ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Meilin Cheng ◽  
Xian Wang ◽  
...  

Land surface heat fluxes consist of the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. The estimation of these fluxes is essential to the study of energy transfer in land–atmosphere systems. In this paper, Landsat 7 ETM+ SLC-on data were applied to estimate the land surface heat fluxes on the northern Tibetan Plateau using the SEBS (surface energy balance system) model, in combination with the calculation of field measurements at CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the Tibetan Plateau) automatic weather stations based on the combinatory method (CM) for comparison. The root mean square errors between the satellite estimations and the CM calculations for the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux were 49.2 W/m2, 46.3 W/m2, 68.2 W/m2, and 54.9 W/m2, respectively. The results reveal that land surface heat fluxes all present significant seasonal variability. Apart from the sensible heat flux, the satellite-estimated net radiation flux, soil heat flux, and latent heat flux exhibited a trend of summer > spring > autumn > winter. In summer, spring, autumn, and winter, respectively, the median values of the net radiation flux (631.8 W/m2, 583.0 W/m2, 404.4 W/m2, 314.3 W/m2), soil heat flux (40.9 W/m2, 37.9 W/m2, 26.1 W/m2, 20.5 W/m2), sensible heat flux (252.7 W/m2, 219.5 W/m2, 221.4 W/m2, 204.8 W/m2), and latent heat flux (320.1 W/m2, 298.3 W/m2, 142.3 W/m2, 75.5 W/m2) exhibited distinct seasonal diversity. From November to April, the in situ sensible heat flux is higher than the latent heat flux; the opposite is true between June and September, leaving May and October as transitional months. For water bodies, alpine meadows and other main underlying surface types, sensible and latent heat flux generally present contrasting and complementary spatial distributions. Due to the 15–60 m resolution of the Landsat 7 ETM+ data, the distribution of land surface heat fluxes can be used as an indicator of complex underlying surface types over the northern Tibetan Plateau.


2021 ◽  
Vol 13 (2) ◽  
pp. 256
Author(s):  
Usman Mazhar ◽  
Shuanggen Jin ◽  
Wentao Duan ◽  
Muhammad Bilal ◽  
Md. Arfan Ali ◽  
...  

Being the highest and largest land mass of the earth, the Tibetan Plateau has a strong impact on the Asian climate especially on the Asian monsoon. With high downward solar radiation, the Tibetan Plateau is a climate sensitive region and the main water source for many rivers in South and East Asia. Although many studies have analyzed energy fluxes in the Tibetan Plateau, a long-term detailed spatio-temporal variability of all energy budget parameters is not clear for understanding the dynamics of the regional climate change. In this paper, satellite remote sensing and reanalysis data are used to quantify spatio-temporal trends of energy budget parameters, net radiation, latent heat flux, and sensible heat flux over the Tibetan Plateau from 2001 to 2019. The validity of both data sources is analyzed from in situ ground measurements of the FluxNet micrometeorological tower network, which verifies that both datasets are valid and reliable. It is found that the trend of net radiation shows a slight increase. The latent heat flux increases continuously, while the sensible heat flux decreases continuously throughout the study period over the Tibetan Plateau. Varying energy fluxes in the Tibetan plateau will affect the regional hydrological cycle. Satellite LE product observation is limited to certain land covers. Thus, for larger spatial areas, reanalysis data is a more appropriate choice. Normalized difference vegetation index proves a useful indicator to explain the latent heat flux trend. Despite the reduction of sensible heat, the atmospheric temperature increases continuously resulting in the warming of the Tibetan Plateau. The opposite trend of sensible heat flux and air temperature is an interesting and explainable phenomenon. It is also concluded that the surface evaporative cooling is not the indicator of atmospheric cooling/warming. In the future, more work shall be done to explain the mechanism which involves the complete heat cycle in the Tibetan Plateau.


2009 ◽  
Vol 6 (1) ◽  
pp. 241-290 ◽  
Author(s):  
E. Nemitz ◽  
K. J. Hargreaves ◽  
A. Neftel ◽  
B. Loubet ◽  
P. Cellier ◽  
...  

Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVAT-type parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is larger, with standard deviations of averages of 18%. While the dataset averaged over the different instruments fails to close the energy budget by 30%, if the largest turbulent fluxes are considered, near perfect energy closure can be achieved, suggesting that most techniques underestimate λE in particular. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.


1995 ◽  
Vol 13 (10) ◽  
pp. 1054-1064 ◽  
Author(s):  
S. A. Josey ◽  
E. C. Kent ◽  
P. K. Taylor

Abstract. The two commonly used statistical measures of the air-sea heat flux, the sampling and classical means, have been compared using hourly reports over a 7-year-period from a weather ship stationed in the NE Atlantic. The sampling mean is the average over all flux estimates in a given period, where individual flux estimates are determined from ship reports of meteorological variables using the well-known bulk formulae. The classical mean is the flux derived by substituting period-averaged values for each of the meteorological variables into the bulk formula (where the averaging period employed is the same as that over which the fluxes are to be determined). Monthly sampling and classical means are calculated for the latent and sensible heat fluxes. The monthly classical mean latent heat flux is found to overestimate the sampling mean by an amount which increases from 1–2 W m–2 in summer to 7 W m–2 in winter, on average, over the 7-year-period. In a given winter month, the excess may be as great as 15 W m–2, which represents about 10% of the latent heat flux. For the sensible heat flux, any seasonal variation between the two means is of the order of 1 W m–2 and is not significant compared to the interannual variation. The discrepancy between the two means for the latent heat flux is shown to arise primarily from a negative correlation between the wind speed and sea-air humidity difference, the effects of which are implicitly included in the sampling method but not in the classical. The influence of the dominant weather conditions on the sign and magnitude of this correlation are explored, and the large negative values that it takes in winter are found to depend on the typical track of the mid-latitude depressions with respect to the position sampled. In conclusion, it is suggested that sampling means should be employed where possible in future climatological studies.


2008 ◽  
Vol 21 (22) ◽  
pp. 5925-5941 ◽  
Author(s):  
Erik Sahlée ◽  
Ann-Sofi Smedman ◽  
Anna Rutgersson ◽  
Ulf Högström

Abstract Recent research has found that boundary layer turbulence changes its organization as the stratification approaches neutral from the unstable side. When the thermal forcing weakens in combination with wind speed above approximately 10 m s−1, detached eddies are formed in the upper part of the surface layer. These eddies effectively transport drier and colder air from aloft to the surface as they move downward, thereby enhancing the surface fluxes of sensible and latent heat. This effect has been observed over both land and sea; that is, it is not dependent on the nature of the underlying surface. Here the authors perform a sensitivity study of how this reorganization of the turbulence structure influences the global air–sea heat fluxes. Using modified bulk formulations incorporating this effect, the magnitude of the enhancement in a climatic sense was estimated by the use of 40-yr ECMWF Re-Analysis (ERA-40) data in the bulk formulas. It is found that for the 1979–2001 period, the global increase of the latent and sensible heat fluxes over the ice-free oceans is 3.6 and 1.2 W m−2, respectively. These numbers suggest that this effect is of some significance. The results also indicate that the regional and seasonal variability may be large. The largest annual increases are found over the southern oceans between 30° and 60°S where the sensible heat flux increases by 2.3 W m−2 and the latent heat flux by 6.5 W m−2. Ocean areas close to the equator experience almost no increase, whereas the latent heat flux from the Arabian Sea during the monsoon period is enhanced by 11.5 W m−2.


2009 ◽  
Vol 6 (8) ◽  
pp. 1445-1466 ◽  
Author(s):  
E. Nemitz ◽  
K. J. Hargreaves ◽  
A. Neftel ◽  
B. Loubet ◽  
P. Cellier ◽  
...  

Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVAT-type parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is larger, with standard deviations of averages of 18%. The dataset averaged over the different instruments fails to close the energy budget by 20%, significantly larger than the uncertainties in the individual flux corrections. However, if the largest individual turbulent flux estimates are considered, energy closure can be achieved, indicating that the closure gap is within the spread of the measurements. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


Sign in / Sign up

Export Citation Format

Share Document