scholarly journals Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data

2014 ◽  
Vol 14 (11) ◽  
pp. 5659-5677 ◽  
Author(s):  
Q. Shi ◽  
S. Liang

Abstract. Estimations from meteorological stations over the Tibetan Plateau (TP) indicate that since the 1980s the surface-sensible heat flux has been decreasing continuously, and modeling studies suggest that such changes are likely linked to the weakening of the East Asian Monsoon through exciting Rossby wave trains. However, the spatial and temporal variations in the surface-sensible and latent heat fluxes over the entire TP remain unknown. This study aims to characterize the spatial and seasonal variability of the surface-sensible and latent heat fluxes at 0.5° over the TP from 1984 to 2007 by synthesizing multiple data sources including ground measurements, reanalysis products, and remote-sensing products. The root mean square errors (RMSEs) from cross validation are 14.3 Wm−2 and 10.3 Wm−2 for the monthly fused sensible and latent heat fluxes, respectively. The fused sensible and latent heat-flux anomalies are consistent with those estimated from meteorological stations, and the uncertainties of the fused data are also discussed. The associations among the fused sensible and latent heat fluxes and the related surface anomalies such as mean temperature, temperature range, snow cover, and normalized difference vegetation index (NDVI) in addition to atmospheric anomalies such as cloud cover and water vapor show seasonal dependence, suggest that the land–biosphere–atmosphere interactions over the TP could display nonuniform feedbacks to the climate changes. It would be interesting to disentangle the drivers and responses of the surface-sensible and latent heat-flux anomalies over the TP in future research from evidences of modeling results.

2021 ◽  
Vol 13 (2) ◽  
pp. 256
Author(s):  
Usman Mazhar ◽  
Shuanggen Jin ◽  
Wentao Duan ◽  
Muhammad Bilal ◽  
Md. Arfan Ali ◽  
...  

Being the highest and largest land mass of the earth, the Tibetan Plateau has a strong impact on the Asian climate especially on the Asian monsoon. With high downward solar radiation, the Tibetan Plateau is a climate sensitive region and the main water source for many rivers in South and East Asia. Although many studies have analyzed energy fluxes in the Tibetan Plateau, a long-term detailed spatio-temporal variability of all energy budget parameters is not clear for understanding the dynamics of the regional climate change. In this paper, satellite remote sensing and reanalysis data are used to quantify spatio-temporal trends of energy budget parameters, net radiation, latent heat flux, and sensible heat flux over the Tibetan Plateau from 2001 to 2019. The validity of both data sources is analyzed from in situ ground measurements of the FluxNet micrometeorological tower network, which verifies that both datasets are valid and reliable. It is found that the trend of net radiation shows a slight increase. The latent heat flux increases continuously, while the sensible heat flux decreases continuously throughout the study period over the Tibetan Plateau. Varying energy fluxes in the Tibetan plateau will affect the regional hydrological cycle. Satellite LE product observation is limited to certain land covers. Thus, for larger spatial areas, reanalysis data is a more appropriate choice. Normalized difference vegetation index proves a useful indicator to explain the latent heat flux trend. Despite the reduction of sensible heat, the atmospheric temperature increases continuously resulting in the warming of the Tibetan Plateau. The opposite trend of sensible heat flux and air temperature is an interesting and explainable phenomenon. It is also concluded that the surface evaporative cooling is not the indicator of atmospheric cooling/warming. In the future, more work shall be done to explain the mechanism which involves the complete heat cycle in the Tibetan Plateau.


2013 ◽  
Vol 13 (11) ◽  
pp. 30349-30405 ◽  
Author(s):  
Q. Shi ◽  
S. Liang

Abstract. Estimations from meteorological stations indicate that the surface sensible heat flux over the Tibetan Plateau (TP) has been decreasing continuously since 1980s, and modeling studies suggest that such changes are likely linked to the weakening of the East Asian Monsoon through exciting Rossby wave trains. However, the spatial and temporal variations in the surface sensible and latent heat fluxes over the entire TP remain unknown. This study aims to characterize the monthly surface sensible and latent heat fluxes at 0.5° over the TP from 1984 to 2007 by synthesizing multiple data sources including ground measurements, reanalysis products, and remote sensing products. The root mean square errors (RMSEs) from cross-validation are 11.1 W m−2 and 17.8 W m−2 for the monthly fused sensible and latent heat fluxes, respectively. The fused sensible and latent heat flux anomalies are consistent with those estimated from meteorological stations, and the uncertainties of the fused data are also discussed. The annual sensible heat flux over the TP is shown to be decreasing by −1.1 W m−2 deacade−1 with dominant decreasing in summer (−3.9 W m−2 deacade−1), while the latent heat flux shows a decrease (increase) in spring (autumn) but at a magnitude less than that of the sensible heat flux. Such decreased tendency of the fused sensible and latent heat flux over the TP is consistent to the weakened East Asian Monsoon as well as the solar dimming. The associations among sensible and latent heat fluxes and the related surface anomalies such as mean temperature, temperature range, snow cover, and Normalized Difference Vegetation Index (NDVI) in addition to atmospheric anomalies such as cloud cover and water vapor show seasonal dependence, suggest that the land–biosphere–atmosphere interactions over the TP could display nonuniform feedbacks to the climate changes. It would be interesting to disentangle the drivers and responses of the surface sensible and latent heat flux anomalies over the TP in future research from evidences of modeling results.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


2014 ◽  
Vol 11 (24) ◽  
pp. 7369-7382 ◽  
Author(s):  
K. Mallick ◽  
A. Jarvis ◽  
G. Wohlfahrt ◽  
G. Kiely ◽  
T. Hirano ◽  
...  

Abstract. This paper introduces a relatively simple method for recovering global fields of latent heat flux. The method focuses on specifying Bowen ratio estimates through exploiting air temperature and vapour pressure measurements obtained from infrared soundings of the AIRS (Atmospheric Infrared Sounder) sensor onboard NASA's Aqua platform. Through combining these Bowen ratio retrievals with satellite surface net available energy data, we have specified estimates of global noontime surface latent heat flux at the 1°×1° scale. These estimates were provisionally evaluated against data from 30 terrestrial tower flux sites covering a broad spectrum of biomes. Taking monthly average 13:30 data for 2003, this revealed promising agreement between the satellite and tower measurements of latent heat flux, with a pooled root-mean-square deviation of 79 W m−2, and no significant bias. However, this success partly arose as a product of the underspecification of the AIRS Bowen ratio compensating for the underspecification of the AIRS net available energy, suggesting further refinement of the approach is required. The error analysis suggested that the landscape level variability in enhanced vegetation index (EVI) and land surface temperature contributed significantly to the statistical metric of the predicted latent heat fluxes.


2019 ◽  
Vol 11 (24) ◽  
pp. 2899
Author(s):  
Nan Ge ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Meilin Cheng ◽  
Xian Wang ◽  
...  

Land surface heat fluxes consist of the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. The estimation of these fluxes is essential to the study of energy transfer in land–atmosphere systems. In this paper, Landsat 7 ETM+ SLC-on data were applied to estimate the land surface heat fluxes on the northern Tibetan Plateau using the SEBS (surface energy balance system) model, in combination with the calculation of field measurements at CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the Tibetan Plateau) automatic weather stations based on the combinatory method (CM) for comparison. The root mean square errors between the satellite estimations and the CM calculations for the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux were 49.2 W/m2, 46.3 W/m2, 68.2 W/m2, and 54.9 W/m2, respectively. The results reveal that land surface heat fluxes all present significant seasonal variability. Apart from the sensible heat flux, the satellite-estimated net radiation flux, soil heat flux, and latent heat flux exhibited a trend of summer > spring > autumn > winter. In summer, spring, autumn, and winter, respectively, the median values of the net radiation flux (631.8 W/m2, 583.0 W/m2, 404.4 W/m2, 314.3 W/m2), soil heat flux (40.9 W/m2, 37.9 W/m2, 26.1 W/m2, 20.5 W/m2), sensible heat flux (252.7 W/m2, 219.5 W/m2, 221.4 W/m2, 204.8 W/m2), and latent heat flux (320.1 W/m2, 298.3 W/m2, 142.3 W/m2, 75.5 W/m2) exhibited distinct seasonal diversity. From November to April, the in situ sensible heat flux is higher than the latent heat flux; the opposite is true between June and September, leaving May and October as transitional months. For water bodies, alpine meadows and other main underlying surface types, sensible and latent heat flux generally present contrasting and complementary spatial distributions. Due to the 15–60 m resolution of the Landsat 7 ETM+ data, the distribution of land surface heat fluxes can be used as an indicator of complex underlying surface types over the northern Tibetan Plateau.


2007 ◽  
Vol 20 (15) ◽  
pp. 3924-3941 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Jason P. Evans ◽  
Roland A. Geerken ◽  
Ronald B. Smith

Abstract The Euphrates Plain (EP) experiences large interannual variability in vegetation cover, especially in areas of marginal rain-fed agriculture. Vegetation in this region is primarily limited by available soil moisture, as determined by winter precipitation, spring precipitation, and air temperature. Satellite analyses indicate that the springtime normalized difference vegetation index (NDVI) is negatively correlated with surface albedo, and that interannual variability in albedo in the EP produces an estimated forcing on the radiation balance that peaks at 16.0 W m−2 in May. Simulations with a regional climate model indicate that surface energy fluxes during a drought year (1999) differed substantially from those during a year with normal precipitation (2003). These differences were geographically specific, with the EP exhibiting increased albedo and decreased sensible heat flux while the neighboring Zagros Plateau region showed no albedo effect, a large increase in sensible heat flux, and an offsetting reduction in latent heat flux. In both the EP and the Zagros there was a potential for positive feedbacks on temperature and drought in late spring, though the most likely feedback mechanisms differed between the two regions: in the EP surface brightening leads to cooling and reduced turbulent heat flux, while in the Zagros region reduced latent heat flux leads to warming and a deepening of the planetary boundary layer.


2009 ◽  
Vol 6 (1) ◽  
pp. 241-290 ◽  
Author(s):  
E. Nemitz ◽  
K. J. Hargreaves ◽  
A. Neftel ◽  
B. Loubet ◽  
P. Cellier ◽  
...  

Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVAT-type parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is larger, with standard deviations of averages of 18%. While the dataset averaged over the different instruments fails to close the energy budget by 30%, if the largest turbulent fluxes are considered, near perfect energy closure can be achieved, suggesting that most techniques underestimate λE in particular. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.


2020 ◽  
pp. 1-16
Author(s):  
Zhaoguo Li ◽  
Shihua Lyu ◽  
Lijuan Wen ◽  
Lin Zhao ◽  
Yinhuan Ao ◽  
...  

Abstract The Tibetan Plateau (TP) lakes are sensitive to climate change due to its seasonal ice cover, but few studies have paid attention to the freeze-thaw process of TP lakes and its key control parameters. By combining 216 simulation experiments using the LAKE2.0 model with the observations, we evaluated the effects of ice and snow albedo, ice (Kdi) and water (Kdw) extinction coefficients on the lake ice phenology, water temperature, sensible and latent heat fluxes. The reference experiment performs well in simulating the lake temperature, with a small positive bias increasing with depth, but it underestimates the ice thickness. The increase of ice albedo, snow albedo and Kdi induce a significant decrease in water temperature. Compared with the latent heat, the sensible heat flux is more sensitive to these three parameters. The ice thickness increases almost linearly with the increase of ice albedo but decreases with the increase of Kdi. The ice thickness and frozen days vary little with Kdw, but increasing Kdw can decrease the water temperature. Compared with the ice albedo, the Kdi and snow albedo have a large effect on the number of frozen days. This study brings to light the necessity to improve the parameterizations of the TP lakes freeze-thaw process.


2009 ◽  
Vol 6 (1) ◽  
pp. 1945-1978 ◽  
Author(s):  
F. Miglietta ◽  
B. Gioli ◽  
Y. Brunet ◽  
R. W. A. Hutjes ◽  
A. Matese ◽  
...  

Abstract. The CarboEurope Regional Experiment Strategy (CERES) was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG) geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.


Sign in / Sign up

Export Citation Format

Share Document