scholarly journals On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in Central Europe

2013 ◽  
Vol 13 (12) ◽  
pp. 32093-32131
Author(s):  
D. van Pinxteren ◽  
C. Neusüß ◽  
H. Herrmann

Abstract. Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large dataset of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded representative for typical central-european continental conditions.

2014 ◽  
Vol 14 (8) ◽  
pp. 3913-3928 ◽  
Author(s):  
D. van Pinxteren ◽  
C. Neusüß ◽  
H. Herrmann

Abstract. Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large data set of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation during intense radiation days in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded as representative for typical central European continental conditions.


PM10 aerosols were monitored and analyzed for heavy metal concentration at Raipur city Chhattisgarh, India for possible source identification of pollutants. Sampling of PM10 aerosols was carried out by using respirable dust sampler during the year 2016. Daily PM10 average concentrations varied between 122.033 and 197.854 µg/m3, 91.350 and 133.950 µg/m3 and 112.770 and 480.170 µg/m3 in summer, monsoon and winter respectively. Chemical analysis of PM10 samples was carried out for heavy metal determination. Heavy metal (Fe, Mn, Ni and Pb) were analyzed with the help of atomic absorption spectroscopy (AAS) and found in the range of 2.713-36.862, 0.131-9.129. 0.880-4.195 and 0.015-0.321 µg/m3 for Fe, Mn, Pb and Ni respectively. PM10 concentrations shows distinct seasonal variation being twice in winter season than in summer; winter (mean: 241.820 ± 33.912 µg/m3) > summer (mean: 159.512 ± 14.360 µg/m3) > monsoon (mean: 107.480 ± 9.213 µg/m3). The concentration of heavy metal was different in all the seasons depending on their sources. Identification of possible sources was done by principal component analysis (PCA) illustrating industrial activities, soil (crustal) dust and biomass burning as the major sources in the region. The back trajectory analysis of the air masses depicts that the local anthropogenic activities affect the concentration of pollutants at the source. Correlation analysis between the heavy metal concentrations agreed the results obtained by PCA. The work helped in observing the seasonal trend of particulate matter concentrations and in identification of major sources of air pollution in the city.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 539
Author(s):  
Abdelhaleem Khader ◽  
Randal S. Martin

Few air pollutant studies within the Palestinian territories have been reported in the literature. In March–April and May–June of 2018, three low-cost, locally calibrated particulate monitors (AirU’s) were deployed at different elevations and source areas throughout the city of Nablus in Northern West Bank, Palestine. During each of the three-week periods, high but site-to-site similar particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) and less than 10 µm (PM10) concentrations were observed. The PM2.5 concentrations at the three sampling locations and during both sampling periods averaged 38.2 ± 3.6 µg/m3, well above the World Health Organization’s (WHO) 24 h guidelines. Likewise, the PM10 concentrations exceeded or were just below the WHO’s 24 h guidelines, averaging 48.5 ± 4.3 µg/m3. During both periods, short episodes were identified in which the particulate levels at all three sites increased substantially (≈2×) above the regional baseline. Air mass back trajectory analyses using U.S. National Oceanic and Atmospheric Administration’s (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggested that, during these peak episodes, the arriving air masses spent recent days over desert areas (e.g., the Saharan Desert in North Africa). On days with regionally low PM2.5 concentrations (≈20 µg/m3), back trajectory analysis showed that air masses were directed in from the Mediterranean Sea area. Further, the lower elevation (downtown) site often recorded markedly higher particulate levels than the valley wall sites. This would suggest locally derived particulate sources are significant and may be beneficial in the identification of potential remediation options.


2016 ◽  
Author(s):  
Ingvar Wängberg ◽  
Michelle G. Nerentorp Mastromonaco ◽  
John Munthe ◽  
Katarina Gårdfeldt

Abstract. Within the EU project, Global Mercury Observation System (GMOS) airborne mercury have been monitored at the background Råö measurement site on the west coast of Sweden from mid May 2012 tot the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The mercury concentrations measured at the Råö site was found to be low in comparison to other comparable European measurement sites. A back trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remotely location of the Råö measurement station it receives background air most of the time. However, elevated concentrations with air masses coming from especially the south east are noticeable. Evidence for formation of gaseous oxidised mercury (GOM) in background free tropospheric air is presented.


2014 ◽  
Vol 24 (1) ◽  
pp. 10-16
Author(s):  
G. Feig ◽  
X. Ncipha ◽  
S. Naidoo ◽  
D. Mabaso ◽  
N. Ngcukana ◽  
...  

A peak in the ambient ozone concentration was observed at three of the six ambient air quality monitoring stations in the Vaal Triangle Airshed Priority Area on the second of June 2013. The ozone peak was associated with elevated concentrations of particulate matter, including PM10, PM2.5 and black carbon, but not sulphur dioxide, oxides of nitrogen, carbon monoxide nor benzene. Back trajectory analysis using Hysplit showed that the air masses containing the high levels of ozone passed over areas influenced by coal fired power stations in the Waterberg, metal processing in the Bojanala region and high intensity fires 30km to 50km upwind of the stations.


2016 ◽  
Vol 20 (1) ◽  
pp. 1-27 ◽  
Author(s):  
K. Dimitriou ◽  
G. R. McGregor ◽  
P. A. Kassomenos ◽  
A. K. Paschalidou

Abstract This paper aims to define atmospheric pathways related with the occurrence of daily winter low temperature episodes (LTE) in England, for the 26-yr period 1974–99, and to reveal possible associations with increased mortality rates. For this purpose, backward airmass trajectories, corresponding to LTE in five regions of England, were deployed. A statistically significant increase in mortality levels, at the 0.05 level, was found for LTE, compared to non-LTE days across all five regions. Seven categories of atmospheric trajectory patterns associated with LTE were identified: east, local, west, North Atlantic, Arctic, southwest, and Scandinavian. Consideration of the link between airmass trajectory patterns and mortality levels by region revealed a possible west-to-east split in the nature of air masses connected with elevated mortality. Specifically, for the West Midlands and northwest regions, relatively warm winter weather conditions from the west, most likely associated with the eastward progression of low pressure systems, are allied with the highest daily average mortality counts, whereas, for the northeast, Humberside/York, and southeast regions, cold continental air advection from northern or eastern Europe, which lasts for several days and is linked with either a blocking pattern over the western margins of Europe or an intense high pressure anomaly over eastern or northern Europe, appears important in mortality terms. This finding confirms that winter weather health associations are complex, such that climate setting and airmass climatology need to be taken into account when considering climate and health relationships.


Geosciences ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 87
Author(s):  
Claire S. Allen ◽  
Elizabeth R. Thomas ◽  
Hilary Blagbrough ◽  
Dieter R. Tetzner ◽  
Richard A. Warren ◽  
...  

Winds in the Southern Ocean drive exchanges of heat and carbon dioxide between the ocean and atmosphere. Wind dynamics also explain the dominant patterns of both basal and surface melting of glaciers and ice shelves in the Amundsen and Bellingshausen Seas. Long records of past wind strength and atmospheric circulation are needed to assess the significance of these recent changes. Here we present evidence for a novel proxy of past south westerly wind (SWW) strength over the Amundsen and Bellingshausen Seas, based on diatoms preserved in an Antarctic Peninsula ice core. Ecological affinities of the identified diatom taxa indicate an almost exclusively marine assemblage, dominated by open ocean taxa from the Northern Antarctic Zone (NAZ). Back-trajectory analysis shows the routes of air masses reaching the ice core site and reveals that many trajectories involve contact with surface waters in the NAZ of the Amundsen and Bellingshausen Seas. Correlation analyses between ice core diatom abundance and various wind vectors yield positive and robust coefficients for the 1980–2010 period, with average annual SWW speeds exhibiting the strongest match. Collectively, the data presented here provide new evidence that diatoms preserved in an Antarctic Peninsula ice core offer genuine potential as a new proxy for SWW strength.


2014 ◽  
Vol 14 (8) ◽  
pp. 11447-11491 ◽  
Author(s):  
J. C. Schroder ◽  
S. J. Hanna ◽  
R. L. Modini ◽  
A. L. Corrigan ◽  
A. M. Macdonald ◽  
...  

Abstract. Size resolved observations of aerosol particles (including black carbon particles) and cloud residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, CA during 2012. A counterflow virtual impactor was used to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling ten hours of in-cloud sampling were analyzed. Since the CVI only sampled cloud droplets larger than ≈11 μm, less than 100% of the cloud droplets were sampled during the two cloud events (≈38% of the cloud droplets for the first cloud event and ≈24% of the cloud droplets for the second cloud were sampled). Back trajectories showed that air masses for both cloud events spent at least 96 h over the Pacific Ocean and traveled near, or over populated regions just before sampling. Based on bulk aerosol particle concentrations measured from the total inlet the two air masses sampled were classified as polluted marine air, a classification that was consistent with back trajectory analysis and the mass concentrations of refractory black carbon (rBC) measured from the total inlet. The activated fraction of rBC, estimated from the measurements, ranged from 0.01 to 0.1 for core diameters ranging from 70 to 220 nm. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC sampled from the residual inlet show that sub-100 nm rBC cores were incorporated into the droplets in both clouds. The coating analysis shows that the rBC cores had average coating thicknesses of 75 nm for core diameters of 70 nm and 29 nm for core diameters of 220 nm. The presence of sub-100 nm rBC cores in the cloud residuals is consistent with kappa-Köhler theory and the measured coating thicknesses of the rBC cores.


2014 ◽  
Vol 14 (1) ◽  
pp. 301-316 ◽  
Author(s):  
W. Zhang ◽  
T. Zhu ◽  
W. Yang ◽  
Z. Bai ◽  
Y. L. Sun ◽  
...  

Abstract. Measurements of gaseous pollutants – including ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOX = NO + NO2), carbon monoxide (CO), particle number concentrations (5.6–560 nm and 0.47–30 μm) – and meteorological parameters (T, RH, P) were conducted during the Campaigns of Air Quality Research in Beijing and Surrounding Regions in 2008 (CAREBeijing-2008), from 27 August through 13 October 2008. The data from a total 18 flights (70 h flight time) from near the surface to 2100 m altitude were obtained with a Yun-12 aircraft in the southern surrounding areas of Beijing (38–40° N, 114–118° E). The objectives of these measurements were to characterize the regional variation of air pollution during and after the Olympics of 2008, determine the importance of air mass trajectories and to evaluate of other factors that influence the pollution characteristics. The results suggest that there are primarily four distinct sources that influenced the magnitude and properties of the pollutants in the measured region based on back-trajectory analysis: (1) southerly transport of air masses from regions with high pollutant emissions, (2) northerly and northeasterly transport of less pollutant air from further away, (3) easterly transport from maritime sources where emissions of gaseous pollutant are less than from the south but still high in particle concentrations, and (4) the transport of air that is a mixture from different regions; that is, the air at all altitudes measured by the aircraft was not all from the same sources. The relatively long-lived CO concentration is shown to be a possible transport tracer of long-range transport from the northwesterly direction, especially at the higher altitudes. Three factors that influenced the size distribution of particles – i.e., air mass transport direction, ground source emissions and meteorological influences – are also discussed.


2016 ◽  
Vol 16 (21) ◽  
pp. 13379-13387 ◽  
Author(s):  
Ingvar Wängberg ◽  
Michelle G. Nerentorp Mastromonaco ◽  
John Munthe ◽  
Katarina Gårdfeldt

Abstract. Within the EU-funded project, Global Mercury Observation System (GMOS) airborne mercury has been monitored at the background Råö measurement site on the western coast of Sweden from mid-May 2012 to the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The following mercury species/fractions were measured: gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidised mercury (GOM) using the Tekran measurement system. The mercury concentrations measured at the Råö site were found to be low in comparison to other, comparable, European measurement sites. A back-trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remote location of the Råö measurement station it receives background air about 60 % of the time. However, elevated mercury concentrations arriving with air masses coming from the south-east are noticeable. GEM and PBM concentrations show a clear annual variation with the highest values occurring during winter, whereas the highest concentrations of GOM were obtained in spring and summer. An evaluation of the diurnal pattern of GOM, with peak concentrations at midday or in the early afternoon, which often is observed at remote places, shows that it is likely to be driven by local meteorology in a similar way to ozone. Evidence that a significant part of the GOM measured at the Råö site has been formed in free tropospheric air is presented.


Sign in / Sign up

Export Citation Format

Share Document