scholarly journals Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

2014 ◽  
Vol 14 (9) ◽  
pp. 13649-13680 ◽  
Author(s):  
K. E. Daumit ◽  
A. J. Carrasquillo ◽  
J. F. Hunter ◽  
J. H. Kroll

Abstract. Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

2014 ◽  
Vol 14 (19) ◽  
pp. 10773-10784 ◽  
Author(s):  
K. E. Daumit ◽  
A. J. Carrasquillo ◽  
J. F. Hunter ◽  
J. H. Kroll

Abstract. Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas–particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.


2020 ◽  
Author(s):  
Lu Chen ◽  
Lingdong Kong ◽  
Songying Tong ◽  
Kejing Yang ◽  
Shengyan Jin ◽  
...  

Abstract. Nitrate aerosol is ubiquitous in the atmosphere, and it can exit in both solid aerosol particles and fog and cloud droplets. Nitrate in the aqueous and particulate phase can undergo photolysis to produce oxidizing active radicals, which will inevitably affect various atmospheric chemical processes. However, the role of nitrate aerosols in these atmospheric photochemical processes remains unclear. In this study, the effects of nitrate photolysis on the aqueous phase oxidation of bisulfite under different conditions were investigated. Results show that nitrate photolysis can significantly promote the oxidation of bisulfite to sulfate. It is found that pH plays a significant role in the reaction, and ammonium sulfate has significant impacts on regulating the pH of solution and the enhancement of sulfate production. We also found an apparent synergism among halogen chemistry, nitrate and its photochemistry and S(IV) aqueous oxidation, especially the oxidation of halide ions by the nitrate photolysis and by the intermediate peroxymonosulfuric acid (HSO5−) produced by the free radical chain oxidation of S(IV) in acidic solution leads to the coupling of the redox cycle of halogen with the oxidation of bisulfite, which promotes the continuous aqueous oxidation of bisulfite and the formation of sulfate. In addition, it is also found that O2 is of great significance on nitrate photolysis for the conversion of HSO3−, and H2O2 generation during the nitrate photolysis is verified. These results provide a new insight into the heterogeneous aqueous phase oxidation pathways and mechanisms of SO2 in cloud and fog droplets and haze particles.


2009 ◽  
Vol 9 (6) ◽  
pp. 1907-1928 ◽  
Author(s):  
R. Volkamer ◽  
P. J. Ziemann ◽  
M. J. Molina

Abstract. The lightest Non Methane HydroCarbon (NMHC), i.e., acetylene (C2H2) is found to form secondary organic aerosol (SOA). Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO) as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3<pH<4), and relative humidity (10<RH<90%). The rate of SOA formation is found enhanced by several orders of magnitude in the photochemical system. The SOA yields (YSOA) ranged from 1% to 24% and did not correlate with the organic mass portion of the seed, but increased linearly with liquid water content (LWC) of the seed. For fixed LWC, YSOA varied by more than a factor of five. Water soluble organic carbon (WSOC) photochemistry in the liquid water associated with internally mixed inorganic/WSOC seed aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA) and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e., does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.


2008 ◽  
Vol 8 (4) ◽  
pp. 14841-14892 ◽  
Author(s):  
R. Volkamer ◽  
P. J. Ziemann ◽  
M. J. Molina

Abstract. The lightest Non Methane HydroCarbon (NMHC), i.e. acetylene (C2H2) is found to form secondary organic aerosol (SOA). Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO) as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosol, mild acidification with sulphuric acid (SA, 3<pH<4), and relative humidity (10<RH<90%). The rate of SOA formation is found enhanced by several orders of magnitude in the photochemical system. The SOA yields (YSOA) ranged from 1% to 20% and did not correlate with the organic mass portion of the seed, but increased linearly with liquid water content (LWC) of the seed. For fixed LWC, YSOA varied by more than a factor of five. Water soluble organic carbon (WSOC) photochemistry in the liquid water associated with internally mixed inorganic/WSOC seed aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA) and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e. does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.


2016 ◽  
Vol 16 (3) ◽  
pp. 1693-1712 ◽  
Author(s):  
C. R. Hoyle ◽  
C. Fuchs ◽  
E. Järvinen ◽  
H. Saathoff ◽  
A. Dias ◽  
...  

Abstract. The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.


2015 ◽  
Vol 15 (23) ◽  
pp. 33843-33896 ◽  
Author(s):  
C. R. Hoyle ◽  
C. Fuchs ◽  
E. Järvinen ◽  
H. Saathoff ◽  
A. Dias ◽  
...  

Abstract. The growth of aerosol due to the aqueous phase oxidation of SO2 by O3 was measured in laboratory generated clouds created in the CLOUD chamber at CERN. Experiments were performed at 10 and −10 °C, on acidic (sulphuric acid) and on partially to fully neutralised (ammonium sulphate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted by oxidation rates previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system are well represented by accepted rates, based on bulk measurements. To the best of our knowledge, these are the first laboratory based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rates to temperatures below 0 °C is correct.


Author(s):  
Jéssica Vejdani Amorim ◽  
Xinyang Guo ◽  
Tania Gautam ◽  
Rongyan Fang ◽  
Christian Fotang ◽  
...  

Atmospheric aqueous phases (cloud and fog droplets, aerosol liquid water) are important reaction media for the processing of water-soluble organic acids (OAs). The photochemistry of these species is known to...


2018 ◽  
Author(s):  
Qing Yu ◽  
Jing Chen ◽  
Weihua Qin ◽  
Yuepeng Zhang ◽  
Siming Cheng ◽  
...  

Abstract. Water soluble organic carbon (WSOC) in atmospheric aerosols may pose significant impacts on haze formation, climate change, and human health. This study investigated the distribution characteristics and sources of WSOC in Beijing based on the diurnal PM1, PM2.5 and PM10 samples collected during haze episodes in winter and early spring of 2017. The haze episode in winter showed elevated level of WSOC, around three times of that in spring. WSOC was enriched in PM2.5 in winter while the proportions in both finer (0–1 μm) and coarse particles (2.5–10 μm) increased in spring. Several organic tracers were carefully selected and measured to demonstrate the sources and formation mechanism of WSOC. Most of the identified organic tracers showed similar seasonal variation, diurnal change and size distributions with WSOC, while the biogenic secondary organic aerosol (SOA) tracer cis-pinonic acid was an obvious exception. Based on the distribution characteristics of the secondary organic tracers and their correlation patterns with key influencing factors, the importance of the gas-phase versus aqueous-phase oxidation processes on SOA formation was explored. The gas-phase photochemical oxidation was weakened during haze episodes, whereas the aqueous-phase oxidation became the major pathway of SOA formation, especially in winter, at night and for the coarser particles. Secondary sources accounted for more than 50 % of WSOC in both winter and spring. Biomass burning was not the dominant source of WSOC in Beijing during haze episodes. Primary sources showed greater influence on finer particles while secondary sources became more important for coarser particles during haze episode in winter. SOC estimated by the OC-EC method, WSOC-levoglucosan method, and PMF-based methods were comparable, and the potential errors for different SOC estimation methods were discussed.


2021 ◽  
Author(s):  
Majda Mekic ◽  
Thomas Schaefer ◽  
Hartmut Herrmann

&lt;p&gt;Anthropogenic and biogenic sources produce numerous primary emitted gases, organic compounds, and aerosols in the atmosphere. An important group of such compounds are &amp;#945;, &amp;#946;-unsaturated carbonyl molecules, which can be formed in the atmosphere due to their secondary origin, including oxidation of their precursors such as hydrocarbons with common atmospheric oxidants such as hydroxyl radicals (&amp;#8231;OH). Since those compounds contain at least one double bond and one carbonyl group, they are characterized as water-soluble molecules, which can diffuse on the cloud droplets&amp;#8217; surface and undergo a phase transfer from the gas phase to the atmospheric aqueous phase. In the latter, the oxidized organic compounds can contribute to aerosol mass production through in-cloud processes, yielding aqueous phase secondary organic aerosols (aqSOA). Due to their strong photochemical behavior, the development of a new analytical approach for evaluating the OH radical kinetics in the aqueous phase under dark conditions was essential. One of the most studied non-photolytic reactions is Fenton chemistry (Fe(II)/H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;), which serves as an OH radical source in the dark in the atmospheric aqueous phase after catalytic decomposition of H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; in the presence of Fe(II) at acidic pH values. In a typical experiment, temperature-dependent second-order rate constants of OH radicals with unsaturated dialdehydes, such as (1) crotonaldehyde, and (2) 1,4-butenedial, were determined in a bulk reactor by using the competition kinetics method. In the newly developed method, the role of radical scavenger was performed by isotopically labeled 2-propanol (d8), while the OH-initiated oxidation produces deuterated acetone (d6), being analyzed with GC-MS after derivatization. The findings from our research will be incorporated in the CAPRAM model to explain discrepancies between experimentally observed and predicted aqSOA properties.&lt;/p&gt;


2018 ◽  
Author(s):  
Anna Jaruga ◽  
Hanna Pawlowska

Abstract. This paper introduces a new scheme available in the library of algorithms for representing cloud microphysics in numerical models named libcloudph++. The scheme extends the Lagrangian microphysics scheme available in libcloudph++ to the aqueous phase chemical processes occurring within cloud droplets. The representation of chemical processes focuses on the aqueous phase oxidation of the dissolved SO2 by O3 and H2O2. The Lagrangian Microphysics and Chemistry (LMC) scheme allows tracking the changes in the cloud condensation nuclei (CCN) distribution caused by both collisions between cloud droplets and aqueous phase oxidation. The scheme is implemented in C++ and equipped with bindings to Python which allow reusing the created scheme from models implemented in other programming languages. The scheme can be used on either CPU or GPU, and is distributed under the GPL3 license. Here, the LMC scheme is tested in a simple 0-dimensional adiabatic parcel model and then used in a 2-dimensional prescribed flow framework. The results are discussed with the focus on changes to the CCN sizes and compared with other model simulations discussed in the literature.


Sign in / Sign up

Export Citation Format

Share Document