scholarly journals A scaling analysis of ozone photochemistry: II Investigation of the similarity relationship

2005 ◽  
Vol 5 (6) ◽  
pp. 12985-13010
Author(s):  
B. Ainslie ◽  
D. G. Steyn

Abstract. The similarity relationship for maximum ozone concentration as a function of initial precursor concentrations developed in the first article of this 2-part series exhibits a scale break, most easily seen after a Weibull transformation, which identifies a characteristic scale for ozone photochemistry. In this paper, we investigate the similarity relationship using simple semi-quantitative models and model output. From this investigation, we develop a set of properties characterizing ozone-precursor relationships. We find the scaling break is associated with a change in the temporal variability of ozone production. Finally, we examine a series of smog chamber experiments for evidence of a scaling break. We find the data support a slight break after suitable transformation. It is difficult to tell if the lack of distinct break is due to smog chamber experimental limitations, a bias in the test conditions or if the processes leading to the scaling break are overly enhanced by chemical mechanisms.


2016 ◽  
Author(s):  
Andrey I. Skorokhod ◽  
Elena V. Berezina ◽  
Konstantin B. Moiseenko ◽  
Nikolai F. Elansky ◽  
Igor B. Belikov

Abstract. Volatile organic compounds (VOCs) were measured by proton transfer reaction – mass spectrometry (PTR-MS) on a mobile laboratory in a transcontinental TROICA-12 (21.07.2008–04.08.2008) campaign along the Trans-Siberian railway from Moscow to Vladivostok. Surface concentrations of benzene (C6H6) and toluene (C7H8) along with non-methane hydrocarbons (NMHCs), CO, O3, SO2, NO, NO2 and meteorology are analyzed in this study to identify the main sources of benzene and toluene along the Trans-Siberian railway. The most measurements in the TROICA-12 campaign were conducted under low-wind/stagnant conditions in moderately (~ 78 % of measurements) to weakly polluted (~ 20 % of measurements) air directly affected by regional anthropogenic sources adjacent to the railroad. Only 2 % of measurements were identified as characteristic of highly polluted urban atmosphere. Maximum values of benzene and toluene during the campaign reached 36.5 ppb and 45.6 ppb, correspondingly, which is significantly less than their one-time maximum permissible concentrations (94 and 159 ppb for benzene and toluene, correspondingly). About 90 % of benzene and 65 % of toluene content is attributed to motor vehicle transport and 10 % and 20 %, correspondingly, provided by the other local and regional-scale sources. The highest average concentrations of benzene and toluene are measured in the industrial regions of the European Russia (up to 0.3 and 0.4 ppb for benzene and toluene, correspondingly) and south Siberia (up to 0.2 and 0.4 ppb for benzene and toluene, correspondingly). Total contribution of benzene and toluene to photochemical ozone production along the Trans-Siberian railway is about 16 % compared to the most abundant biogenic VOC – isoprene. This contribution, however, is found to be substantially higher (up to 60–70 %) in urbanized areas along the railroad suggesting important role of anthropogenic pollutant sources in regional ozone photochemistry and air quality.



2012 ◽  
Vol 12 (4) ◽  
pp. 9161-9194 ◽  
Author(s):  
L. Ran ◽  
C. S. Zhao ◽  
W. Y. Xu ◽  
M. Han ◽  
X. Q. Lu ◽  
...  

Abstract. Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs). Ozone pollution was found to be more severe in Tianjin than in Shanghai during the summer, either based on the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive VOC mixture in the Tianjin region. It is found that industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominate. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.





2013 ◽  
Vol 6 (4) ◽  
pp. 7735-7769
Author(s):  
X. Wang ◽  
T. Liu ◽  
F. Bernard ◽  
X. Ding ◽  
S. Wen ◽  
...  

Abstract. We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor suspended in a temperature-controlled enclosure equipped with two banks of black lamps as the light source. Temperature can be set in the range from −10 °C to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with NMHCs < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cm



2008 ◽  
Vol 8 (1) ◽  
pp. 1913-1950 ◽  
Author(s):  
B. N. Duncan ◽  
J. J. West ◽  
Y. Yoshida ◽  
A. M. Fiore ◽  
J. R. Ziemke

Abstract. We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50–150 additional violations per year (i.e., above those that would occur without European pollution) of the European health standard for ozone (8-h average >120 μg/m3 or ~60 ppbv) in northern Africa and the Near East. We estimate that 19 000 additional mortalities occur annually in these regions from exposure to European ozone pollution and 50 000 additional deaths globally; the majority of the additional deaths occurs outside of Europe. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions. We also show that the tropospheric ozone column data product derived from the OMI and MLS instruments is currently of limited value for air quality applications as the portion of the column above the boundary layer and below the tropopause is large and variable, effectively obscuring the boundary layer signal.



2019 ◽  
Vol 487 (6) ◽  
pp. 669-673
Author(s):  
K. B. Moiseenko ◽  
E. V. Berezina ◽  
A. V. Vasileva ◽  
Yu. A. Shtabkin ◽  
A. I. Skorokhod ◽  
...  

Quantitative estimates on the ozone production efficiency (OPE) per a molecular of NOx (=NO+NO2), ΔP, and ozone production rate, PQ, are derived for the region of Central Siberia based on near surface observations of O3, NO, and NO2) at Zotino Tall Tower Observatory in 2007-2015. Experimental data follow are a power law dependencies on NOx abundance: PQ χ [NOx]-n+1, ΔP χ [NOx]-n, n = 0,82±0,06 (coefficient of determination R2 = 0,66), with the power law exponent corresponding to a NOx-limiting regime of ozone production in a weakly polluted air mass. During summer, the value of ΔP ranges from 30,0-43,7 [mol.O3/mol.NOx] which agrees well with the corresponding estimate of 39,8 [mol.O3/mol.NOx] derived from GEOS‑chem CTM model simulations. The derived estimates provide an observation based conclusion on the important role of regional anthropogenic emissions of NOx in summertime ozone photochemistry in the remote areas of Siberia.



2018 ◽  
Vol 18 (10) ◽  
pp. 7721-7738 ◽  
Author(s):  
Stefanie Meul ◽  
Ulrike Langematz ◽  
Philipp Kröger ◽  
Sophie Oberländer-Hayn ◽  
Patrick Jöckel

Abstract. Using a state-of-the-art chemistry–climate model we investigate the future change in stratosphere–troposphere exchange (STE) of ozone, the drivers of this change, as well as the future distribution of stratospheric ozone in the troposphere. Supplementary to previous work, our focus is on changes on the monthly scale. The global mean annual influx of stratospheric ozone into the troposphere is projected to increase by 53 % between the years 2000 and 2100 under the RCP8.5 greenhouse gas scenario. The change in ozone mass flux (OMF) into the troposphere is positive throughout the year with maximal increase in the summer months of the respective hemispheres. In the Northern Hemisphere (NH) this summer maximum STE increase is a result of increasing greenhouse gas (GHG) concentrations, whilst in the Southern Hemisphere(SH) it is due to equal contributions from decreasing levels of ozone depleting substances (ODS) and increasing GHG concentrations. In the SH the GHG effect is dominating in the winter months. A large ODS-related ozone increase in the SH stratosphere leads to a change in the seasonal breathing term which results in a future decrease of the OMF into the troposphere in the SH in September and October. The resulting distributions of stratospheric ozone in the troposphere differ for the GHG and ODS changes due to the following: (a) ozone input occurs at different regions for GHG- (midlatitudes) and ODS-changes (high latitudes); and (b) stratospheric ozone is more efficiently mixed towards lower tropospheric levels in the case of ODS changes, whereas tropospheric ozone loss rates grow when GHG concentrations rise. The comparison between the moderate RCP6.0 and the extreme RCP8.5 emission scenarios reveals that the annual global OMF trend is smaller in the moderate scenario, but the resulting change in the contribution of ozone with stratospheric origin (O3s) to ozone in the troposphere is of comparable magnitude in both scenarios. This is due to the larger tropospheric ozone precursor emissions and hence ozone production in the RCP8.5 scenario.



2008 ◽  
Vol 8 (8) ◽  
pp. 2267-2283 ◽  
Author(s):  
B. N. Duncan ◽  
J. J. West ◽  
Y. Yoshida ◽  
A. M. Fiore ◽  
J. R. Ziemke

Abstract. We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50–150 additional violations per year (i.e. above those that would occur without European pollution) of the European health standard for ozone (8-h average >120 μg/m3 or ~60 ppbv) in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000) in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.



2020 ◽  
Vol 6 (34) ◽  
pp. eaba8272 ◽  
Author(s):  
Audrey Gaudel ◽  
Owen R. Cooper ◽  
Kai-Lan Chang ◽  
Ilann Bourgeois ◽  
Jerry R. Ziemke ◽  
...  

Tropospheric ozone is an important greenhouse gas, is detrimental to human health and crop and ecosystem productivity, and controls the oxidizing capacity of the troposphere. Because of its high spatial and temporal variability and limited observations, quantifying net tropospheric ozone changes across the Northern Hemisphere on time scales of two decades had not been possible. Here, we show, using newly available observations from an extensive commercial aircraft monitoring network, that tropospheric ozone has increased above 11 regions of the Northern Hemisphere since the mid-1990s, consistent with the OMI/MLS satellite product. The net result of shifting anthropogenic ozone precursor emissions has led to an increase of ozone and its radiative forcing above all 11 study regions of the Northern Hemisphere, despite NOx emission reductions at midlatitudes.



2016 ◽  
Vol 189 ◽  
pp. 169-189 ◽  
Author(s):  
W. H. Brune ◽  
B. C. Baier ◽  
J. Thomas ◽  
X. Ren ◽  
R. C. Cohen ◽  
...  

Ozone pollution affects human health, especially in urban areas on hot sunny days. Its basic photochemistry has been known for decades and yet it is still not possible to correctly predict the high ozone levels that are the greatest threat. The CalNex_SJV study in Bakersfield CA in May/June 2010 provided an opportunity to examine ozone photochemistry in an urban area surrounded by agriculture. The measurement suite included hydroxyl (OH), hydroperoxyl (HO2), and OH reactivity, which are compared with the output of a photochemical box model. While the agreement is generally within combined uncertainties, measured HO2 far exceeds modeled HO2 in NOx-rich plumes. OH production and loss do not balance as they should in the morning, and the ozone production calculated with measured HO2 is a decade greater than that calculated with modeled HO2 when NO levels are high. Calculated ozone production using measured HO2 is twice that using modeled HO2, but this difference in calculated ozone production has minimal impact on the assessment of NOx-sensitivity or VOC-sensitivity for midday ozone production. Evidence from this study indicates that this important discrepancy is not due to the HO2 measurement or to the sampling of transported plumes but instead to either emissions of unknown organic species that accompany the NO emissions or unknown photochemistry involving nitrogen oxides and hydrogen oxides, possibly the hypothesized reaction OH + NO + O2 → HO2 + NO2.



Sign in / Sign up

Export Citation Format

Share Document