scholarly journals GEM-AQ, an on-line global multiscale chemical weather system: model description and evaluation of gas phase chemistry processes

2007 ◽  
Vol 7 (5) ◽  
pp. 14895-14937 ◽  
Author(s):  
J. W. Kaminski ◽  
L. Neary ◽  
J. Struzewska ◽  
J. C. McConnell ◽  
A. Lupu ◽  
...  

Abstract. Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, has been developed as a platform to investigate chemical weather at scales from global to urban. The model was exercised for five years (2001–2005) to evaluate its ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide on the global scale. The model results presented are compared with observations from satellites, aircraft measurement campaigns and balloon sondes.




2021 ◽  
Author(s):  
Mohammad Mohammadlou ◽  
Abdolreza Bahremand ◽  
Daniel Princz ◽  
Nicholas Kinar ◽  
Saman Razavi

Abstract The Global Environmental Multiscale Model (GEM) is an integrated forecasting and data assimilation system developed by Environment and Climate Change Canada. The model is currently in operational use for data assimilation and forecasting at global 25 km to 15 km scales; regional 10 km scales over North America; and 2.5 km scales over Canada. To demonstrate the performance of the GEM model for forecasting applications, global forecast outputs of GEM at the 25 km scale were compared to temperature and precipitation datasets collected over an area of 1,648,000 km2 especially representative of the country of Iran on a daily temporal scale. Using the De Martonne method for climate classification and data from 177 meteorological stations, the country of Iran was classified into three zones: an arid zone with 87 stations; a semi-arid zone with 63 stations; and a humid zone with 27 stations. GEM model outputs were compared to observations in each of these demarcated zones. The results show good agreement between modelled and measured daily temperatures with Kling-Gupta efficiencies of 0.76, 0.71 and 0.78 in arid, semi-arid and humid regions respectively, and a moderate agreement between modelled and measured annual precipitation with 50.06%, 35.6% and 15.38% differences in arid, semi-arid and humid regions, respectively. The results also indicate that there is a significant systematic error between the elevation of the stations and the average elevation of corresponding GEM grid cells (13%). The results provide an evaluation of the model performance for Iran to be utilized for climate change applications in a regional context and can serve as a basis for the development of future high-resolution GEM model versions on a global scale.



2005 ◽  
Vol 44 (1) ◽  
pp. 153-166 ◽  
Author(s):  
Godelieve Deblonde ◽  
Stephen Macpherson ◽  
Yves Mireault ◽  
Pierre Héroux

Abstract Precipitable water (PW) derived from the GPS zenith tropospheric delay (ZTD) is evaluated (as a first step toward variational data assimilation) through comparison with that of collocated radiosondes (RS_PW), operational analyses, and 6-h forecasts (from the Canadian Global Environmental Multiscale model) of the Canadian Meteorological Centre. Two sources of ZTD data are considered: 1) final ZTD (over Canada), computed by the Geodetic Survey Division (GSD) of Natural Resources Canada, and 2) final ZTD (distributed globally), obtained from the International GPS Service (IGS). The mean GSD GPS–derived PW (GPS_PW) is 14.9 mm (reflecting the relatively cold Canadian climate), whereas that of the IGS dataset is 20.8 mm. Intercomparison statistics [correlation, standard deviation (SD), and bias] between GPS_PW and RS_PW are, respectively, 0.97, 2.04 mm, and 1.35 mm for the GSD data and 0.98, 2.6 mm, and 0.67 mm for the IGS data. Comparisons of GPS_PW with 6-h forecast PW (TRIAL_PW) show slightly lower correlations and a higher SD. The increase in SD is greater for the IGS data, which is not surprising, because in regions such as the Tropics and subtropics, moisture forecasts are of a lower quality and the RS observation network is sparse. From a three-way intercomparison (IGS GPS_PW, RS_PW, and TRIAL_PW) of the SD statistics, it is found that GPS_PW has the lowest estimated PW error (≈1 mm) for PW in the 5–30-mm range. For PW greater than 30 mm, the RS_PW estimated error is ≈2 mm, and that of GPS_PW is ≈2.5 mm. The TRIAL_PW estimated error increases with PW, reaching 5.5 mm in the 40–55-mm PW range. These intercomparison results indicate that GPS_PW should be a useful source of humidity information for NWP applications.





2020 ◽  
Author(s):  
Rolf Sander ◽  
David Cabrera-Perez ◽  
Sara Bacer ◽  
Sergey Gromov ◽  
Jos Lelieveld ◽  
...  

<p>Aromatic compounds in the troposphere are reactive towards ozone<br>(O<sub>3</sub>), hydroxyl (OH) and other radicals. Here we present an<br>assessment of their impacts on the gas-phase chemistry, using the<br>general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). The<br>monocyclic aromatics considered in this study comprise benzene, toluene,<br>xylenes, phenol, styrene, ethylbenzene, trimethylbenzenes, benzaldehyde<br>and lumped higher aromatics bearing more than 9 C atoms. On a global<br>scale, the estimated net changes are minor when aromatic compounds are<br>included in the chemical mechanism of our model. For instance, the<br>tropospheric burden of CO increases by about 6 %, and those of OH,<br>O<sub>3</sub>, and NO<sub>x</sub> (NO + NO<sub>2</sub>) decrease between<br>2 % and 14 %. The global mean changes are small partially because of<br>compensating effects between high- and low-NO<sub>x</sub> regions. The<br>largest change is predicted for glyoxal, which increases globally by 36<br>%. Significant regional changes are identified for several species. For<br>instance, glyoxal increases by 130 % in Europe and 260 % in East Asia,<br>respectively. Large increases in HCHO are also predicted in these<br>regions. In general, the influence of aromatics is particularly evident<br>in areas with high concentrations of NO<sub>x</sub>, with increases up<br>to 12 % in O<sub>3</sub> and 17 % in OH. Although the global impact of<br>aromatics is limited, our results indicate that aromatics can strongly<br>influence tropospheric chemistry on a regional scale, most significantly<br>in East Asia.</p>



2016 ◽  
Author(s):  
Alba Badia ◽  
Oriol Jorba ◽  
Apostolos Voulgarakis ◽  
Donald Dabdub ◽  
Carlos Pérez García-Pando ◽  
...  

Abstract. This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), an online chemical weather prediction system conceived for both the regional and the global scale. We provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3–0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (RMSE below 9 μg m−3). The modeled vertical distribution of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modelled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting ozone (O3) burden (348 Tg) lies within the range of other state-of-the-art global atmospheric chemistry models. The model generally captures the spatial and seasonal trends of background surface O3 and its vertical distribution. However, the model tends to overestimate O3 throughout the troposphere in several stations. This is attributed to an overestimation of CO concentration over the southern hemisphere leading to an excessive production of O3. Overall, O3 correlations range between 0.6 to 0.8 for daily mean values. The overall performance of the NMMB/BSC-CTM is comparable to that of other state-of-the-art global chemical transport models.



2011 ◽  
Vol 11 (24) ◽  
pp. 13001-13027 ◽  
Author(s):  
C. Pérez ◽  
K. Haustein ◽  
Z. Janjic ◽  
O. Jorba ◽  
N. Huneeus ◽  
...  

Abstract. We describe and evaluate the NMMB/BSC-Dust, a new dust aerosol cycle model embedded online within the NCEP Non-hydrostatic Multiscale Model (NMMB). NMMB is a further evolution of the operational Non-hydrostatic Mesoscale Model (WRF-NMM), which together with other upgrades has been extended from meso to global scales. Its unified non-hydrostatic dynamical core is prepared for regional and global simulation domains. The new NMMB/BSC-Dust is intended to provide short to medium-range weather and dust forecasts from regional to global scales and represents a first step towards the development of a unified chemical-weather model. This paper describes the parameterizations used in the model to simulate the dust cycle including sources, transport, deposition and interaction with radiation. We evaluate monthly and annual means of the global configuration of the model against the AEROCOM dust benchmark dataset for year 2000 including surface concentration, deposition and aerosol optical depth (AOD), and we evaluate the daily AOD variability in a regional domain at high resolution covering Northern Africa, Middle East and Europe against AERONET AOD for year 2006. The NMMB/BSC-Dust provides a good description of the horizontal distribution and temporal variability of the dust. Daily AOD correlations at the regional scale are around 0.6–0.7 on average without dust data assimilation. At the global scale the model lies within the top range of AEROCOM dust models in terms of performance statistics for surface concentration, deposition and AOD. This paper discusses the current strengths and limitations of the modeling system and points towards future improvements.



2011 ◽  
Vol 11 (6) ◽  
pp. 17551-17620 ◽  
Author(s):  
C. Pérez ◽  
K. Haustein ◽  
Z. Janjic ◽  
O. Jorba ◽  
N. Huneeus ◽  
...  

Abstract. We describe and evaluate the NMMB/BSC-Dust, a new dust aerosol cycle model embedded online within the NCEP Non-hydrostatic Multiscale Model (NMMB). NMMB is a further evolution of the operational Non-hydrostatic Mesoscale Model (WRF-NMM), which together with other upgrades has been extended from meso to global scales. Its unified non-hydrostatic dynamical core is prepared for regional and global simulation domains. The new NMMB/BSC-Dust is intended to provide short to medium-range weather and dust forecasts from regional to global scales and represents a first step towards the development of a unified chemical-weather model. This paper describes the parameterizations used in the model to simulate the dust cycle including sources, transport, deposition and interaction with radiation. We evaluate monthly and annual means of the global configuration of the model against the AEROCOM dust benchmark dataset for year 2000 including surface concentration, deposition and aerosol optical depth (AOD), and we evaluate the daily AOD variability in a regional domain at high resolution covering Northern Africa, Middle East and Europe against AERONET AOD for year 2006. The NMMB/BSC-Dust provides a good description of the horizontal distribution and temporal variability of the dust. Daily AOD correlations at the regional scale are around 0.6–0.7 on average without dust data assimilation. At the global scale the model lies within the top range of AEROCOM dust models in terms of performance statistics for surface concentration, deposition and AOD. This paper discusses the current strengths and limitations of the modeling system and points towards future improvements.



Sign in / Sign up

Export Citation Format

Share Document