scholarly journals Observations of the mesospheric semi-annual oscillation (MSAO) in water vapour by Odin/SMR

2008 ◽  
Vol 8 (3) ◽  
pp. 10153-10187
Author(s):  
S. Lossow ◽  
J. Urban ◽  
J. Gumbel ◽  
P. Eriksson ◽  
D. Murtagh

Abstract. Mesospheric water vapour measurements taken by the SMR instrument onboard the Odin satellite between 2002 and 2006 have been analysed with focus on the mesospheric semi-annual circulation in the tropical and subtropical region. This analysis provides the first complete picture of mesospheric SAO in water vapour, covering altitudes above 80 km where the only previous study based on UARS/HALOE data was limited. Our analysis shows a clear semi-annual variation in the water vapour distribution in the entire altitude range between 65 km and 100 km in the equatorial area. Maxima occur near the equinoxes below 75 km and around the solstices above 80 km. The phase reversal occurs in the small layer in-between, consistent with the downward propagation of the mesospheric SAO in the zonal wind in this altitude range. The SAO amplitude exhibits a double peak structure, with maxima at about 75 km and 81 km. The observed amplitudes show higher values than the UARS/HALOE amplitudes. The upper peak amplitude remains relatively constant with latitude. The lower peak amplitude decreases towards higher latitudes, but recovers in the Southern Hemisphere subtropics. On the other hand, the annual variation is much more prominent in the northern hemispheric subtropics. Furthermore, higher volume mixing ratios during summer and lower values during winter are observed in the Northern Hemisphere subtropics, as compared to the corresponding latitude range in the Southern Hemisphere.

2008 ◽  
Vol 8 (21) ◽  
pp. 6527-6540 ◽  
Author(s):  
S. Lossow ◽  
J. Urban ◽  
J. Gumbel ◽  
P. Eriksson ◽  
D. Murtagh

Abstract. Mesospheric water vapour measurements taken by the SMR instrument aboard the Odin satellite between 2002 and 2006 have been analysed with focus on the mesospheric semi-annual circulation in the tropical and subtropical region. This analysis provides the first complete picture of mesospheric SAO in water vapour, covering altitudes above 80 km where previous studies were limited. Our analysis shows a clear semi-annual variation in the water vapour distribution in the entire altitude range between 65 km and 100 km in the equatorial area. Maxima occur near the equinoxes below 75 km and around the solstices above 80 km. The phase reversal occurs in the small layer in-between, consistent with the downward propagation of the mesospheric SAO in the zonal wind in this altitude range. The SAO amplitude exhibits a double peak structure in the equatorial region, with maxima at about 75 km and 81 km. The observed amplitudes show higher values than an earlier analysis based on UARS/HALOE data. The upper peak amplitude remains relatively constant with latitude. The lower peak amplitude decreases towards higher latitudes, but recovers in the Southern Hemisphere subtropics. On the other hand, the annual variation is much more prominent in the Northern Hemisphere subtropics. Furthermore, higher volume mixing ratios during summer and lower values during winter are observed in the Northern Hemisphere subtropics, as compared to the corresponding latitude range in the Southern Hemisphere.


2010 ◽  
Vol 10 (1) ◽  
pp. 1457-1481
Author(s):  
N. Mze ◽  
A. Hauchecorne ◽  
H. Bencherif ◽  
F. Dalaudier ◽  
J.-L. Bertaux

Abstract. In this paper, the stellar occultation instrument GOMOS is compared with ozonesondes from the SHADOZ network. We only used nighttime O3 profiles and a requirement selection at 8 Southern Hemisphere stations. 7 years of GOMOS datasets (GOPR 6.0cf and IPF 5.0) and 11 years of balloon-sondes are used in this study. A monthly distribution of GOMOS O3 mixing ratios is performed in the upper-troposphere and in the stratosphere (15–50 km). A comparison with SHADOZ is done in the altitude range from 15 km to 30 km. In the 21–30 km altitude range, a satisfactory agreement is observed between GOMOS and SHADOZ although some differences are observed depending on the station. The range for monthly differences is generally decreasing with increasing height and is within ±15%. It is found that the agreement between GOMOS and SHADOZ degrades below ~20 km. The median differences are nearly within ±5% particularly above 23 km. But a large positive bias is found below 21 km compared to SHADOZ.


2010 ◽  
Vol 10 (16) ◽  
pp. 8025-8035 ◽  
Author(s):  
N. Mze ◽  
A. Hauchecorne ◽  
H. Bencherif ◽  
F. Dalaudier ◽  
J.-L. Bertaux

Abstract. In this paper, the stellar occultation instrument GOMOS is compared with ozonesondes from the SHADOZ network. We only used nighttime O3 profiles and selected 8 Southern Hemisphere stations. 7 years of GOMOS datasets (GOPR 6.0cf and IPF 5.0) and 11 years of balloon-sondes are used in this study. A monthly distribution of GOMOS O3 mixing ratios was performed in the upper-troposphere and in the stratosphere (15–50 km). A comparison with SHADOZ was made in the altitude range between 15 km and 30 km. In the 21–30 km altitude range, a satisfactory agreement was observed between GOMOS and SHADOZ, although some differences were observed depending on the station. The range for monthly differences generally decreases with increasing height and is within ±15%. It was found that the agreement between GOMOS and SHADOZ declines below ~20 km. The median differences are almost within ±5%, particularly above 23 km. But a large positive bias was found below 21 km, in comparison to SHADOZ.


2011 ◽  
Vol 11 (2) ◽  
pp. 4167-4198 ◽  
Author(s):  
A. Gabriel ◽  
H. Körnich ◽  
S. Lossow ◽  
D. H. W. Peters ◽  
J. Urban ◽  
...  

Abstract. Based on Odin satellite data 2001–2010 we investigate stationary wave patterns in middle atmospheric ozone (O3) and water vapour (H2O) as indicated by their seasonal long-term means of the zonally asymmetric components O3* = O3-[O3] and H2O* = H2O-[H2O] ([O3], [H2O]: zonal means). At mid- and polar latitudes of Northern and Southern Hemisphere, we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave one patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10–20% of zonal mean values. During winter, the wave one in stratospheric O3* is characterized by a maximum over North Pacific/Aleutians and a minimum over North Atlantic/Northern Europe and by a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H2O* extends from lower stratosphere to upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave one patterns occur during southern spring when the polar vortex breaks down. Based on a simplified tracer transport approach we explain these wave patterns as a first-order result of zonal asymmetries in mean meridional transport by geostrophically balanced winds, which were derived from combined temperature profiles of Odin, and ECMWF (European Centre of Medium-Range Weather Forecasts) Reanalysis data (ERA Interim). Further influences which may contribute to the stationary wave patterns, e.g. eddy mixing processes or temperature-dependent chemistry, are discussed.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 78
Author(s):  
R. D. DuBois ◽  
O. G. de Lucio

Triply differential data are presented for the 200 eV positron and electron impact ionization of argon. Six electron emission energies between 2.6 and 19 eV, and for scattering angles of 2, 3, and 4 degrees cover a momentum transfer range of 0.16 to 0.31 a.u. The binary and recoil intensities are fitted using a double peak structure in both regions, which, for the present kinematic conditions, are unresolved. The fitted peak intensities and angular positions are shown to have systematic dependences as a function of the momentum transfer and kinematic emission angle, respectively, and illustrate projectile charge effects. A comparison with available theories is made where it is seen that the most notable differences include the fact that for the binary lobe, the observed intensity for emission angles around 100° is absent in the theories, and the theoretical predications overestimate the importance of recoil interactions.


2017 ◽  
Vol 17 (18) ◽  
pp. 11521-11539 ◽  
Author(s):  
Stefan Lossow ◽  
Hella Garny ◽  
Patrick Jöckel

Abstract. The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.


2015 ◽  
Vol 12 (13) ◽  
pp. 10167-10193 ◽  
Author(s):  
A. Kock ◽  
D. L. Arévalo-Martínez ◽  
C. R. Löscher ◽  
H. W. Bange

Abstract. Depth profiles of nitrous oxide (N2O) were measured during six cruises to the upwelling area and oxygen minimum zone (OMZ) off Peru in 2009 and 2012/13, covering both the coastal shelf region and the adjacent open ocean. N2O profiles displayed a strong sensitivity towards oxygen concentrations. Open ocean profiles showed a transition from a broad maximum to a double-peak structure towards the centre of the OMZ where the oxygen minimum was more pronounced. Maximum N2O concentrations in the open ocean were about 80 nM. A linear relationship between ΔN2O and apparent oxygen utilization (AOU) could be found for all measurements within the upper oxycline, with a slope similar to studies in other oceanic regions. N2O profiles close to the shelf revealed a much higher variability, with N2O concentrations in the upper oxycline reaching up to several hundred nanomoles per liter at selected stations. Due to the extremely sharp oxygen gradients at the shelf, these maxima occurred in very shallow water depths of less than 50 m. In this area, a linear relationship between ΔN2O and AOU could not be observed. N2O concentrations above 100 nM were observed at oxygen concentrations ranging from close to saturation to suboxic conditions. Our results indicate that the coastal upwelling off Peru at the shelf causes conditions that lead to extreme N2O accumulation.


2007 ◽  
Vol 7 (2) ◽  
pp. 5515-5552 ◽  
Author(s):  
C. Ren ◽  
A. R. MacKenzie ◽  
C. Schiller ◽  
G. Shur ◽  
V. Yushkov

Abstract. We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding water back to some of the trajectories, the LACM and instantaneous-dehydration reconstructions have a dry bias. The interpolated-ECMWF reconstruction does not suffer this dry bias, because convection in the ECMWF model moistens air parcels dramatically, by pumping moist air upwards. This indicates that the ECMWF model captures the gross features of the rehydration of air in the TTL by convection. Overall, the ECMWF models captures well the exponential decrease in total water mixing ratio with height above 250 hPa, so that all the reconstruction techniques capture more than 75% of the variance in the measured total water mixing ratios over the depth of the TTL. We have therefore developed a simple method for re-setting the total water in LACM using the ECMWF-analysed specific humidity in regions where the model predicts convection. By picking up the main contributing processes to dehydration and rehydration in the TTL, LACM reconstructs total water mixing ratios along aircraft flight tracks at the top of the TTL, close to the cold point, that are always in substantially better agreement with observations than instantaneous-dehydration reconstructions, and better than the ECMWF analysis for regions of high relative humidity and cloud.


2021 ◽  
Author(s):  
Liubov Poshyvailo-Strube ◽  
Rolf Müller ◽  
Stephan Fueglistaler ◽  
Michaela I. Hegglin ◽  
Johannes C. Laube ◽  
...  

Abstract. The stratospheric meridional overturning circulation, also referred to as the Brewer-Dobson circulation (BDC), controls the composition of the stratosphere, which, in turn, affects radiation and climate. As the BDC cannot be directly measured, one has to infer its strength and trends indirectly. For instance, trace gas measurements allow the calculation of average transit times. Satellite measurements provide information on the distributions of trace gases for the entire stratosphere, with measurements of particularly long and dense coverage available for stratospheric water vapour (H2O). Although chemical processes and boundary conditions confound interpretation, the influence of CH4 oxidation on H2O is relatively straightforward, and thus H2O is an appealing tracer for transport analysis despite these caveats. In this work, we explore how mean age of air trends can be estimated from the combination of stratospheric H2O and CH4 data. We carry out different sensitivity studies with the Chemical Lagrangian Model of the Stratosphere (CLaMS) and focus on the analysis of the periods of 1990–2006 and 1990–2017. In particular, we assess the methodological uncertainties related to the two commonly-used approximations of (i) instantaneous stratospheric entry mixing ratio propagation, and (ii) constant correlation between mean age and the fractional release factor of methane. Our results show that the estimated mean age of air trends from the combination of observed stratospheric H2O and CH4 changes may be significantly affected by the assumed approximations. Depending on the investigated stratospheric region and the considered period, the error in estimated mean age of air decadal trends can be large – the discrepancies are up to 10 % per decade or even more at the lower stratosphere. For particular periods, the errors from the two approximations can lead to opposite effects, which may even cancel out. Finally, we propose an improvement to the approximation method by using an idealised age spectrum to propagate stratospheric entry mixing ratios. The findings of this work can be used for improving and assessing the uncertainties in stratospheric BDC trend estimation from global satellite measurements.


Sign in / Sign up

Export Citation Format

Share Document