scholarly journals An investigation into seasonal and regional aerosol characteristics in East Asia using model-predicted and remotely-sensed aerosol properties

2008 ◽  
Vol 8 (3) ◽  
pp. 8661-8713 ◽  
Author(s):  
C. H. Song ◽  
M. E. Park ◽  
H. J. Ahn ◽  
K. H. Lee ◽  
Y. Lee ◽  
...  

Abstract. In this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (τ MODIS:τM-BAER and τNASA) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD (τCMAQ) that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonable well. Since τMODIS cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by τMODIS itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to τM-BAER, τNASA, and τCMAQ showed strong spatial, temporal and seasonal variations. For example, during the summer episode, τM-BAER, τNASA, and τCMAQ were mainly raised due to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the winter episode, τM-BAER, τNASA, and τCMAQ were higher due largely to high levels of NH3NO3 formed over the urban and industrial centers, as well as in areas with high NH3 emissions. In addition, the accuracy of τM-BAER and τNASA was evaluated by a comparison with the AOD (τAERONET) from the AERONET sites in East Asia. Both τM-BAER and τNASA showed a strong correlation with τAERONETR around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia.

2008 ◽  
Vol 8 (22) ◽  
pp. 6627-6654 ◽  
Author(s):  
C. H. Song ◽  
M. E. Park ◽  
K. H. Lee ◽  
H. J. Ahn ◽  
Y. Lee ◽  
...  

Abstract. In this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (τMODIS: τM-BAER and τNASA) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD (τCMAQ) that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonably well. Since τMODIS cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by τMODIS itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to τMODIS and τCMAQ showed strong spatial, temporal and seasonal variations. For example, during the summer episode, τMODIS and τCMAQ were mainly raised due to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the late fall and winter episodes, τMODIS and τCMAQ were higher due largely to high levels of NH4NO3 formed over the urban and industrial centers, as well as in areas with high NH3 emissions. τCMAQ was in general larger than τMODIS during the year, except for spring. The high biases (τCMAQ>τMODIS) may be due to the excessive formation of both (NH4)2SO4 (summer episode) and NH4NO3 (fall and winter episodes) over China, possibly from the use of overestimated values for NH3 emissions in the CMAQ modeling. According to CMAQ modeling, particulate NH4NO3 made a 14% (summer) to 54% (winter) contribution to σext and τCMAQ. Therefore, the importance of NH4NO3 in estimating τ should not be ignored, particularly in studies of the East Asian air quality. In addition, the accuracy of τM-BAER and τNASA was evaluated by a comparison with the AOD (τAERONET) from the AERONET sites in East Asia. Both τM-BAER and τNASA showed a strong correlation with τAERONET around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 900 ◽  
Author(s):  
Zhe Wang ◽  
Itsushi Uno ◽  
Kazuo Osada ◽  
Syuichi Itahashi ◽  
Keiya Yumimoto ◽  
...  

Atmospheric ammonia (NH3) plays an important role in the formation of secondary inorganic aerosols, the neutralization of acid rain, and the deposition to ecosystems, but has not been well understood yet, especially over East Asia. Based on the GEOS-Chem model results, the IASI satellite retrievals, the in-site surface observations of a nationwide filter pack (FP) network over Japan and the long-term high resolution online NH3 measurements at Fukuoka of western Japan, the spatio-temporal distributions of atmospheric NH3 over East Asia was analyzed comprehensively. A significant seasonal variation with a summer peak was found in all datasets. Comparison between the satellite retrievals and model simulations indicated that the IASI NH3 vertical column density (VCD) showed good consistency with GEOS-Chem results over North and central China, but had large differences over South China due to the effect of clouds. Over the Japan area, GEOS-Chem simulated NH3 concentrations successfully reproduced the spatio-temporal variations compared with in-situ observations, while IASI NH3 VCD retrievals were below or near the detection limit and difficult to obtain a reasonable correlation for with model results. The comprehensive analysis indicated that there were still some differences among different datasets, and more in-situ observations, improved satellite retrievals, and high-resolution model simulations with more accurate emissions are necessary for better understanding the atmospheric NH3 over East Asia.


2014 ◽  
Vol 14 (5) ◽  
pp. 6203-6260 ◽  
Author(s):  
H. Matsui ◽  
M. Koike ◽  
Y. Kondo ◽  
A. Takami ◽  
J. D. Fast ◽  
...  

Abstract. Organic aerosol (OA) simulations using the volatility basis-set approach were made for East Asia and its outflow region. Model simulations were evaluated through comparisons with OA measured by aerosol mass spectrometers in and around Tokyo (at Komaba and Kisai in summer 2003 and 2004) and over the outflow region in East Asia (at Fukue and Hedo in spring 2009). The simulations with aging processes of organic vapors reasonably well reproduced mass concentrations, temporal variations, and formation efficiency of observed OA at all sites. As OA mass was severely underestimated in the simulations without the aging processes, the oxidations of organic vapors are essential for reasonable OA simulations over East Asia. By considering the aging processes, simulated OA concentrations increased from 0.24 to 1.28 μg m−3 in the boundary layer over the whole of East Asia. OA formed from the interaction of anthropogenic and biogenic sources was also enhanced by the aging processes. The fraction of controllable OA was estimated to be 87% of total OA over the whole of East Asia, showing that most of the OA in our simulations formed anthropogenically (controllable). Even a large portion of biogenic secondary OA (78% of biogenic secondary OA) was formed through the influence of anthropogenic sources. The high fraction of controllable OA in our simulations is likely because anthropogenic emissions are dominant over East Asia and OA formation is enhanced by anthropogenic sources and their aging processes. Both the amounts (from 0.18 to 1.12 μg m−3) and the fraction (from 75% to 87%) of controllable OA were increased by aging processes of organic vapors over East Asia.


2014 ◽  
Vol 14 (18) ◽  
pp. 9513-9535 ◽  
Author(s):  
H. Matsui ◽  
M. Koike ◽  
Y. Kondo ◽  
A. Takami ◽  
J. D. Fast ◽  
...  

Abstract. Organic aerosol (OA) simulations using the volatility basis-set approach were made for East Asia and its outflow region. Model simulations were evaluated through comparisons with OA measured by aerosol mass spectrometers in and around Tokyo (at Komaba and Kisai in summer 2003 and 2004) and over the outflow region in East Asia (at Fukue and Hedo in spring 2009). The simulations with aging processes of organic vapors reproduced the mass concentrations, temporal variations, and formation efficiencies of observed OA at all of the sites reasonably well. As OA mass was severely underestimated in the simulations without the aging processes, the oxidations of organic vapors are essential for reasonable OA simulations over East Asia. By considering the aging processes, simulated OA concentrations increased from 0.24 to 1.28 μg m−3 in the boundary layer over the whole of East Asia. OA formed from the interaction of anthropogenic and biogenic sources was also enhanced by the aging processes. The fraction of controllable OA was estimated to be 87% of total OA over the whole of East Asia, which indicated that most of the OA in our simulations were formed anthropogenically (from controllable combustion sources). A large portion of biogenic secondary OA (78% of biogenic secondary OA) was formed through the influence of anthropogenic sources. These fractions were higher than the fraction of anthropogenic emissions. An important reason for these higher controllable fractions was higher oxidant concentrations and the resulting faster oxidation rates of OA precursors by considering anthropogenic sources. Both the amounts (from 0.18 to 1.12 μg m−3) and the fraction (from 75 to 87%) of controllable OA were increased by aging processes of organic vapors over East Asia.


2017 ◽  
Author(s):  
Myungje Choi ◽  
Jhoon Kim ◽  
Jaehwa Lee ◽  
Mijin Kim ◽  
Young-je Park ◽  
...  

Abstract. The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD (τG) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The τG shows reduced median bias and increased ratio within 0.15τA+0.05 range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD (τA) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error (τG-τA) is within −0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of τG are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan.


2012 ◽  
Vol 20 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Xiao-Lin YANG ◽  
Zhen-Wei SONG ◽  
Hong WANG ◽  
Quan-Hong SHI ◽  
Fu CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document