scholarly journals Quantifying transport into the Arctic lowermost stratosphere

2009 ◽  
Vol 9 (1) ◽  
pp. 1407-1446 ◽  
Author(s):  
A. Werner ◽  
C. M. Volk ◽  
E. V. Ivanova ◽  
T. Wetter ◽  
C. Schiller ◽  
...  

Abstract. In-situ measurements of the long-lived trace gases N2O, CFC-11 (CCl3F), H-1211 (CBrClF2), CH4, O3 and H2O performed in the Arctic winter 2003 on board the high-altitude aircraft M55 Geophysica are presented and used to study transport into the lowermost stratosphere (LMS). Fractions of air in the LMS originating in i) the troposphere, ii) the extra-vortex stratosphere above 400 K and iii) the Arctic vortex above 400 K are determined using a simple mass balance calculation. The analysis exhibits a strong tropospheric influence of 50% or more in the lowest 20 K of the high-latitude LMS. Above this region the LMS is dominated by air masses having descended from above 400 K. Below the Arctic vortex region at potential temperatures above 360 K, air in the LMS is a mixture of extra-vortex stratospheric and vortex air masses. The vortex fraction increases from about 40% at 360 K to 100% at 400 K for equivalent latitudes >70° N. This influence of air masses descending through the bottom of the polar vortex increases over the course of the winter. By the end of winter a significant fraction of 30% vortex air in the LMS is found even at an equivalent latitude of 40° N. Since the chemical and dynamical history of vortex air is distinct from that of mid-latitude stratospheric air masses, this study implies that the composition of the mid- to high-latitude LMS during late winter and spring is significantly influenced by the Arctic vortex.

2010 ◽  
Vol 10 (23) ◽  
pp. 11623-11639 ◽  
Author(s):  
A. Werner ◽  
C. M. Volk ◽  
E. V. Ivanova ◽  
T. Wetter ◽  
C. Schiller ◽  
...  

Abstract. In the Arctic winter 2003, in-situ measurements of the long-lived trace gases N2O, CFC-11 (CCl3F), H-1211 (CBrClF2), CH4, O3 and H2O have been performed on board the high-altitude aircraft M55 Geophysica. The data are presented and used to study transport into the lowermost stratosphere (LMS). The LMS can be regarded as a mixture of fractions of air originating in (i) the troposphere, (ii) the extra-vortex stratosphere above 400 K and (iii) the Arctic vortex above 400 K. These fractions are determined using a simple mass balance calculation. The analysis exhibits a strong tropospheric influence of 50% ± 15% or more in the lowest 20 K of the high-latitude LMS. Above this region the LMS is dominated by air masses having descended from above 400 K. Below the Arctic vortex region at potential temperatures above 360 K, air in the LMS is a mixture of extra-vortex stratospheric and vortex air masses. The vortex fraction increases from about 40% ± 15% at 360 K to 100% at 400 K for equivalent latitudes >70° N. This influence of air masses descending through the bottom of the polar vortex increases over the course of the winter. By the end of winter a significant fraction of 30% ± 10% vortex air in the LMS is found even at an equivalent latitude of 40° N. Since the chemical and dynamical history of vortex air is distinct from that of mid-latitude stratospheric air masses, this study implies that the composition of the mid- to high-latitude LMS during late winter and spring is significantly influenced by the Arctic vortex.


2021 ◽  
Author(s):  
Graham Mann ◽  
James Brooke ◽  
Kamalika Sengupta ◽  
Lauren Marshall ◽  
Sandip Dhomse ◽  
...  

<p>The widespread presence of meteoric smoke particles (MSPs) within a distinct class of stratospheric aerosol particles has become clear from in-situ measurements in the Arctic, Antarctic and at mid-latitudes.<br> <br>We apply an adapted version of the interactive stratosphere aerosol configuration of the composition-climate model UM-UKCA, to predict the global distribution of meteoric-sulphuric particles nucleated heterogeneously on MSP cores. We compare the UM-UKCA results to new MSP-sulphuric simulations with the European stratosphere-troposphere chemistry-aerosol modelling system IFS-CB05-BASCOE-GLOMAP.</p><p><br>The simulations show a strong seasonal cycle in meteoric-sulphuric particle abundance results from the winter-time source of MSPs transported down into the stratosphere in the polar vortex. Coagulation during downward transport sees high latitude MSP concentrations reduce from ~500 per cm3 at 40km to ~20 per cm3 at 25km, the uppermost extent of the stratospheric aerosol particle layer (the Junge layer).<br> <br>Once within the Junge layer's supersaturated environment, meteoric-sulphuric particles form readily on the MSP cores, growing to 50-70nm dry-diameter (Dp) at 20-25km. Further inter-particle coagulation between these non-volatile particles reduces their number to 1-5 per cc at 15-20km, particle sizes there larger, at Dp ~100nm.</p><p><br>The model predicts meteoric-sulphurics in high-latitude winter comprise >90% of Dp>10nm particles above 25km, reducing to ~40% at 20km, and ~10% at 15km.<br> <br>These non-volatile particle fractions are slightly less than measured from high-altitude aircraft in the lowermost Arctic stratosphere (Curtius et al., 2005; Weigel et al., 2014), and consistent with mid-latitude aircraft measurements of lower stratospheric aerosol composition (Murphy et al., 1998), total particle concentrations  also matching in-situ balloon measurements from Wyoming (Campbell and Deshler, 2014).<br> <br>The MSP-sulphuric interactions also improve agreement with SAGE-II observed stratospheric aerosol extinction in the quiescent 1998-2002 period. <br> <br>Simulations with a factor-8-elevated MSP input form more Dp>10nm meteoric-sulphurics, but the increased number sees fewer growing to Dp ~100nm, the increased MSPs reducing the stratospheric aerosol layer’s light extinction.</p>


2009 ◽  
Vol 9 (13) ◽  
pp. 4407-4417 ◽  
Author(s):  
S. Lossow ◽  
M. Khaplanov ◽  
J. Gumbel ◽  
J. Stegman ◽  
G. Witt ◽  
...  

Abstract. The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.


2012 ◽  
Vol 5 (6) ◽  
pp. 1205-1228 ◽  
Author(s):  
W. Woiwode ◽  
H. Oelhaf ◽  
T. Gulde ◽  
C. Piesch ◽  
G. Maucher ◽  
...  

Abstract. The mid-infrared FTIR-limb-sounder Michelson Interferometer for Passive Atmospheric Sounding–STRatospheric aircraft (MIPAS-STR) was deployed onboard the research aircraft M55 Geophysica during the RECONCILE campaign (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) in the Arctic winter/spring 2010. From the MIPAS-STR measurements, vertical profiles and 2-dimensional vertical cross-sections of temperature and trace gases are retrieved. Detailed mesoscale structures of polar vortex air, extra vortex air and vortex filaments are identified in the results at typical vertical resolutions of 1 to 2 km and typical horizontal sampling densities of 45 or 25 km, depending on the sampling programme. Results are shown for the RECONCILE flight 11 on 2 March 2010 and are validated with collocated in-situ measurements of temperature, O3, CFC-11, CFC-12 and H2O. Exceptional agreement is found for the in-situ comparisons of temperature and O3, with mean differences (vertical profile/along flight track) of 0.2/−0.2 K for temperature and −0.01/0.05 ppmv for O3 and corresponding sample standard deviations of the mean differences of 0.7/0.6 K and 0.1/0.3 ppmv. The comparison of the retrieved vertical cross-sections of HNO3 from MIPAS-STR and the infrared limb-sounder Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere–New Frontiers (CRISTA–NF) indicates a high degree of agreement. We discuss MIPAS-STR in its current configuration, the spectral and radiometric calibration of the measurements and the retrieval of atmospheric parameters from the spectra. The MIPAS-STR measurements are significantly affected by continuum-like contributions, which are attributed to background aerosol and broad spectral signatures from interfering trace gases, and are important for mid-infrared limb-sounding in the Upper Troposphere/Lower Stratosphere (UTLS) region. Taking into consideration continuum-like effects, we present a scheme suitable for accurate retrievals of temperature and an extended set of trace gases, including the correction of a systematic line-of-sight offset.


2014 ◽  
Vol 14 (7) ◽  
pp. 9849-9901
Author(s):  
R. Weigel ◽  
C. M. Volk ◽  
K. Kandler ◽  
E. Hösen ◽  
G. Günther ◽  
...  

Abstract. In situ measurements with a 4-channel stratospheric condensation particle counter (CPC) were conducted at up to 20 km altitude on board the aircraft M-55 Geophysica from Kiruna, Sweden, in January through March (EUPLEX 2003; RECONCILE 2010) and in December (ESSenCe, 2011). During all campaigns air masses from the upper stratosphere and mesosphere were subsiding inside the Arctic winter vortex, thus transporting refractory aerosol into the lower stratosphere (Θ<500 K) by vertical dispersion. The strength and extent of this downward transport varied between the years depending on the dynamical evolution of the vortex. Inside the vortex and at altitudes of potential temperatures Θ ≥ 450 K as many as eight of eleven particles per cm3 contained refractory material, thermally stable residuals with diameters from 10 nm to a few μm which endure heat exposure of 250 °C. Particle mixing ratios (up to 150 refractory particles per milligram of air) and fractions of non-volatile particles (up to 75% of totally detected particles) reach highest values in air masses with lowest content of nitrous oxide (N2O, down to 70 nmol mol−1). This indicates that refractory aerosol originates from the upper stratosphere or the mesosphere. From mixing ratios of the long lived tracer N2O (simultaneously measured in situ) an empirical index was derived which serves to differentiate air masses according to their origin from inside the vortex, the vortex edge region, and outside the vortex. Previously, observed high fractions of refractory submicron aerosol in the 2003 Arctic vortex were ascribed to unusually strong subsidence during that winter. Measurements under perturbed vortex conditions in 2010 and during early winter in December 2011, however, revealed similarly high values. Thus, the abundance of refractory aerosol at high levels appears to be a feature rather than the exception for the Arctic vortices. During December, the import from aloft into the lower stratosphere appears to be developing; thereafter the abundance of refractory aerosol inside the vortex reaches its highest levels until March. A measurement-based estimate of the total mass of refractory aerosol inside the vortex is provided for each campaign. Based on the derived increase of particle mass in the lower stratospheric vortex (100–67 hPa pressure altitude) on the order of 32 × 106 kg between early and late winter and assuming a mesospheric origin, we estimate the total mass of mesospheric particles deposited in the Arctic vortex and compare it to the expected atmospheric influx of meteoritic material (110 ± 55 × 103 kg per day). Such estimates at present still hold considerable uncertainties which are discussed in detail. Nevertheless, the results strongly suggest that the Arctic vortex easily achieves the drainage of all meteoric material deposited on the upper atmosphere.


2014 ◽  
Vol 14 (22) ◽  
pp. 12319-12342 ◽  
Author(s):  
R. Weigel ◽  
C. M. Volk ◽  
K. Kandler ◽  
E. Hösen ◽  
G. Günther ◽  
...  

Abstract. In situ measurements with a four-channel stratospheric condensation particle counter (CPC) were conducted at up to 20 km altitude on board the aircraft M-55 Geophysica from Kiruna, Sweden, in January through March (EUPLEX 2003, RECONCILE 2010) and in December (ESSenCe 2011). During all campaigns air masses from the upper stratosphere and mesosphere were subsiding inside the Arctic winter vortex, thus initializing a transport of refractory aerosol into the lower stratosphere (Θ < 500 K). The strength and extent of this downward transport varied between the years depending on the dynamical evolution of the vortex. Inside the vortex and at potential temperatures Θ ≥ 450 K around 11 submicron particles per cm3 were generally detected. Up to 8 of these 11 particles per cm3 were found to contain thermo-stable (at 250 °C) residuals with diameters of 10 nm to about 1 μm. Particle mixing ratios (150 mg−1) and fractions of non-volatile particles (75% of totally detected particles) exhibited highest values in air masses having the lowest content of nitrous oxide (70 nmol mol−1 of N2O). This indicates that refractory aerosol originates from the upper stratosphere or the mesosphere. Derived from the mixing ratio of the simultaneously measured long-lived tracer N2O, an empirical index serves to differentiate probed air masses according to their origin: inside the vortex, the vortex edge region, or outside the vortex. Previously observed high fractions of refractory submicron aerosol in the 2003 Arctic vortex were ascribed to unusually strong subsidence during that winter. However, measurements under perturbed vortex conditions in 2010 and during early winter in December 2011 revealed similarly high values. Thus, the abundance of refractory aerosol in the lower stratosphere within the Arctic vortices appears to be a regular feature rather than the exception. During December, the import from aloft into the lower stratosphere appears to be developing; thereafter the abundance of refractory aerosol inside the vortex reaches its highest levels in March. The correlations of refractory aerosol with N2O suggest that, apart from mean subsidence, diabatic dispersion inside the vortex significantly contributes to the transport of particles to the Arctic lower stratosphere. A measurement-based estimate of the total mass of refractory aerosol inside the vortex is provided for each campaign. Based on the derived increase of particle mass in the lower stratospheric vortex (100–67 hPa pressure altitude) by a factor of 4.5 between early and late winter, we estimate the total mass of mesospheric particles deposited over the winter 2009/2010 in the entire Arctic vortex to range between 77 × 103 and 375 × 106 kg. This estimate is compared with the expected atmospheric influx of meteoritic material (110 ± 55 × 103 kg per day). Such estimates at present still hold considerable uncertainties, which are discussed in this article. Nevertheless, the results enable placing constraints on the shape of the so far unknown size distribution of refractory aerosol within the vortex.


2011 ◽  
Vol 4 (6) ◽  
pp. 7035-7108 ◽  
Author(s):  
W. Woiwode ◽  
H. Oelhaf ◽  
T. Gulde ◽  
C. Piesch ◽  
G. Maucher ◽  
...  

Abstract. The mid-infrared FTIR-limb-sounder Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft (MIPAS-STR) was deployed onboard the stratospheric aircraft M55 Geophysica during the RECONCILE campaign in the arctic winter/spring 2010. From the MIPAS-STR measurements, vertical profiles and 2-dimensional vertical cross-sections of temperature and trace gases are retrieved. Detailed mesoscale structures of polar vortex air, extra vortex air and vortex filaments are identified in the results at a typical vertical resolution of 1 to 2 km and typical horizontal sampling density of 45 or 25 km, depending on the sampling programme. Results are shown for the RECONCILE flight 11 on 2 March 2010 and are validated with collocated in-situ measurements of temperature, O3, CFC-11, CFC-12 and H2O. Exceptional agreement is found for the in-situ comparisons of temperature and O3, with mean differences (vertical profile/along flight track) of 0.2/−0.2 K for temperature and −0.01/0.05 ppmv for O3 and corresponding sample standard deviations of the mean differences of 0.7/0.6 K and 0.1/0.3 ppmv. The comparison of the retrieved vertical cross-sections of HNO3 from MIPAS-STR and the infrared limb-sounder Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers (CRISTA-NF) indicates comprehensive agreement. We discuss MIPAS-STR in its current configuration, the spectral and radiometric calibration of the measurements and the retrieval of atmospheric parameters from the spectra. The MIPAS-STR measurements are significantly affected by continuum-like contributions, which are attributed to background aerosol and broad spectral signatures from interfering trace gases and are important for mid-infrared limb-sounding measurements in the Upper Troposphere/Lower Stratosphere (UTLS) region. Considering for continuum-like effects, we present a scheme suitable for accurate retrievals of temperature and an extended set of trace gases, including the correction of a systematic line-of-sight offset.


2014 ◽  
Vol 14 (7) ◽  
pp. 3247-3276 ◽  
Author(s):  
R. Hommel ◽  
K.-U. Eichmann ◽  
J. Aschmann ◽  
K. Bramstedt ◽  
M. Weber ◽  
...  

Abstract. Record breaking loss of ozone (O3) in the Arctic stratosphere has been reported in winter–spring 2010/2011. We examine in detail the composition and transformations occurring in the Arctic polar vortex using total column and vertical profile data products for O3, bromine oxide (BrO), nitrogen dioxide (NO2), chlorine dioxide (OClO), and polar stratospheric clouds (PSC) retrieved from measurements made by SCIAMACHY (Scanning Imaging Absorption SpectroMeter for Atmospheric CHartography) on-board Envisat (Environmental Satellite), as well as total column ozone amount, retrieved from the measurements of GOME-2 (Global Ozone Monitoring Experiment) on MetOp-A (Meteorological Experimental Satellite). Similarly we use the retrieved data from DOAS (Differential Optical Absorption Spectroscopy) measurements made in Ny-Ålesund (78.55° N, 11.55° E). A chemical transport model (CTM) has been used to relate and compare Arctic winter–spring conditions in 2011 with those in the previous year. In late winter–spring 2010/2011 the chemical ozone loss in the polar vortex derived from SCIAMACHY observations confirms findings reported elsewhere. More than 70% of O3 was depleted by halogen catalytic cycles between the 425 and 525 K isentropic surfaces, i.e. in the altitude range ~16–20 km. In contrast, during the same period in the previous winter 2009/2010, a typical warm Arctic winter, only slightly more than 20% depletion occurred below 20 km, while 40% of O3 was removed above the 575 K isentrope (~23 km). This loss above 575 K is explained by the catalytic destruction by NOx descending from the mesosphere. In both Arctic winters 2009/2010 and 2010/2011, calculated O3 losses from the CTM are in good agreement to our observations and other model studies. The mid-winter 2011 conditions, prior to the catalytic cycles being fully effective, are also investigated. Surprisingly, a significant loss of O3 around 60%, previously not discussed in detail, is observed in mid-January 2011 below 500 K (~19 km) and sustained for approximately 1 week. The low O3 region had an exceptionally large spatial extent. The situation was caused by two independently evolving tropopause elevations over the Asian continent. Induced adiabatic cooling of the stratosphere favoured the formation of PSC, increased the amount of active chlorine for a short time, and potentially contributed to higher polar ozone loss later in spring.


Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979&ndash;2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10&ndash;20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


Sign in / Sign up

Export Citation Format

Share Document