scholarly journals Chemical ozone loss and ozone mini-hole event during the Arctic winter 2010/2011 as observed by SCIAMACHY and GOME-2

2014 ◽  
Vol 14 (7) ◽  
pp. 3247-3276 ◽  
Author(s):  
R. Hommel ◽  
K.-U. Eichmann ◽  
J. Aschmann ◽  
K. Bramstedt ◽  
M. Weber ◽  
...  

Abstract. Record breaking loss of ozone (O3) in the Arctic stratosphere has been reported in winter–spring 2010/2011. We examine in detail the composition and transformations occurring in the Arctic polar vortex using total column and vertical profile data products for O3, bromine oxide (BrO), nitrogen dioxide (NO2), chlorine dioxide (OClO), and polar stratospheric clouds (PSC) retrieved from measurements made by SCIAMACHY (Scanning Imaging Absorption SpectroMeter for Atmospheric CHartography) on-board Envisat (Environmental Satellite), as well as total column ozone amount, retrieved from the measurements of GOME-2 (Global Ozone Monitoring Experiment) on MetOp-A (Meteorological Experimental Satellite). Similarly we use the retrieved data from DOAS (Differential Optical Absorption Spectroscopy) measurements made in Ny-Ålesund (78.55° N, 11.55° E). A chemical transport model (CTM) has been used to relate and compare Arctic winter–spring conditions in 2011 with those in the previous year. In late winter–spring 2010/2011 the chemical ozone loss in the polar vortex derived from SCIAMACHY observations confirms findings reported elsewhere. More than 70% of O3 was depleted by halogen catalytic cycles between the 425 and 525 K isentropic surfaces, i.e. in the altitude range ~16–20 km. In contrast, during the same period in the previous winter 2009/2010, a typical warm Arctic winter, only slightly more than 20% depletion occurred below 20 km, while 40% of O3 was removed above the 575 K isentrope (~23 km). This loss above 575 K is explained by the catalytic destruction by NOx descending from the mesosphere. In both Arctic winters 2009/2010 and 2010/2011, calculated O3 losses from the CTM are in good agreement to our observations and other model studies. The mid-winter 2011 conditions, prior to the catalytic cycles being fully effective, are also investigated. Surprisingly, a significant loss of O3 around 60%, previously not discussed in detail, is observed in mid-January 2011 below 500 K (~19 km) and sustained for approximately 1 week. The low O3 region had an exceptionally large spatial extent. The situation was caused by two independently evolving tropopause elevations over the Asian continent. Induced adiabatic cooling of the stratosphere favoured the formation of PSC, increased the amount of active chlorine for a short time, and potentially contributed to higher polar ozone loss later in spring.

2013 ◽  
Vol 13 (6) ◽  
pp. 16597-16660 ◽  
Author(s):  
R. Hommel ◽  
K.-U. Eichmann ◽  
J. Aschmann ◽  
K. Bramstedt ◽  
M. Weber ◽  
...  

Abstract. Record breaking losses of ozone (O3) in the Arctic stratosphere have been reported in winter and spring 2011. Trace gas amounts and polar stratospheric cloud (PSC) distributions retrieved using differential optical absorption spectroscopy (DOAS) and scattering theory applied to the measurements of radiance and irradiance by satellite-born and ground-based instrumentation, document the unusual behaviour. A chemical transport model has been used to relate and compare Arctic winter-spring conditions in 2011 with those in previous years. We examine in detail the composition and transformations occurring in the Arctic polar vortex using total column and vertical profile data products for O3, bromine oxide (BrO), nitrogen dioxide (NO2), chlorine dioxide (OClO), and PSCs retrieved from measurements made by the instrument SCIAMACHY onboard the ESA satellite Envisat, as well as the total column ozone amount, retrieved from the measurements of GOME-2 on the EUMETSAT operational meteorological polar orbiter Metop-A. In the late winter and spring 2010/2011 the chemical loss of O3 in the polar vortex is consistent with and confirms findings reported elsewhere. More than 70% of O3 was depleted between the 425 K and 525 K isentropic surfaces, i.e. in the altitude range ~16–20 km. In contrast, during the same period in the previous winter only slightly more than 20% depletion occurred below 20 km, whereas 40% of the O3 was removed above the 575 K isentrope (~23 km). This loss above the 575 K isentrope is explained by the catalytic destruction by the NOx descending from the mesosphere. At lower altitudes O3 loss results from processing by halogen driven O3 catalytic removal cycles, activated by the large volume of PSC generated throughout this winter and spring. The mid-winter 2011 conditions, prior to the catalytic cycles being fully effective, are also investigated. Surprisingly, a significant loss of O3 with 60% is observed in mid-January 2011 below 500 K (~19 km), which was then sustained for approximately a week. This "mini-hole" event had an exceptionally large spatial extent. Such meteorologically driven changes in polar stratospheric O3 are expected to increase in frequency as anthropogenically induced climate change evolves.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2010 ◽  
Vol 10 (20) ◽  
pp. 9915-9930 ◽  
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
F. Goutail

Abstract. The polar stratospheric ozone loss during the Arctic winters 2004/2005–2009/2010 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Aura Microwave Limb Sounder (MLS), by applying the passive tracer technique. The winter 2004/2005 shows the coldest temperatures, highest area of polar stratospheric clouds and strongest chlorine activation in 2004/2005–2009/2010. The ozone loss diagnosed from both simulations and measurements inside the polar vortex at 475 K ranges from 0.7 ppmv in the warm winter 2005/2006 to 1.5–1.7 ppmv in the cold winter 2004/2005. Halogenated (chlorine and bromine) catalytic cycles contribute to 75–90% of the ozone loss at this level. At 675 K the lowest loss of 0.3–0.5 ppmv is computed in 2008/2009, and the highest loss of 1.3 ppmv is estimated in 2006/2007 by the model and in 2004/2005 by MLS. Most of the ozone loss (60–75%) at this level results from nitrogen catalytic cycles rather than halogen cycles. At both 475 and 675 K levels the simulated ozone and ozone loss evolution inside the vortex is in reasonably good agreement with the MLS observations. The ozone partial column loss in 350–850 K deduced from the model calculations at the MLS sampling locations inside the polar vortex ranges between 43 DU in 2005/2006 and 109 DU in 2004/2005, while those derived from the MLS observations range between 26 DU and 115 DU for the same winters. The partial column ozone depletion derived in that vertical range is larger than that estimated in 350–550 K by 19±7 DU on average, mainly due to NOx chemistry. The column ozone loss estimates from both Mimosa-Chim and MLS in 350–850 K are generally in good agreement with those derived from ground-based ultraviolet-visible spectrometer total ozone observations for the respective winters, except in 2010.


2012 ◽  
Vol 12 (8) ◽  
pp. 20033-20072
Author(s):  
C. Adams ◽  
K. Strong ◽  
X. Zhao ◽  
A. E. Bourassa ◽  
W. H. Daffer ◽  
...  

Abstract. In spring 2011, the Arctic polar vortex was stronger than in any other year on record. As the polar vortex started to break up in April, ozone and NO2 columns were measured with UV-visible spectrometers above the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05° N, 86.42° W) using the differential optical absorption spectroscopy (DOAS) technique. These ground-based column measurements were complemented by Ozone Monitoring Instrument (OMI) and Optical Spectrograph and Infra-Red Imager System (OSIRIS) satellite measurements, Global Modeling Initiative (GMI) simulations, and dynamical parameters. On 8 April 2011, NO2 columns above PEARL from the DOAS, OMI, and GMI datasets were approximately twice as large as in previous years. On this day, temperatures and ozone volume mixing ratios above Eureka were high, suggesting enhanced chemical production of NO2 from NO. Additionally, GMI NOx and N2O fields suggest that downward transport along the vortex edge and horizontal transport from lower latitudes also contributed to the enhanced NO2. The anticyclone that transported lower-latitude NOx above PEARL became frozen-in and persisted in dynamical and GMI N2O fields until the end of the measurement period on 31 May 2011. Ozone isolated within this frozen-in anticyclone (FrIAC) in the middle stratosphere was depleted due to reactions with the enhanced NOx. Ozone loss was calculated using the passive tracer technique, with passive ozone profiles from the Lagrangian Chemistry and Transport Model, ATLAS. At 600 K, ozone losses between 1 December 2010 and 20 May 2011 reached 4.2 parts per million by volume (ppmv) (58%) and 4.4 ppmv (61%), when calculated using GMI and OSIRIS ozone profiles, respectively. This middle-stratosphere gas-phase ozone loss led to a more rapid decrease in ozone column amounts in April/May 2011 compared with previous years. Ground-based, OMI, and GMI ozone total columns within the FrIAC all decreased by more than 100 DU from 15 April to 20 May. Two lows in the ozone columns were also investigated and were attributed to a vortex remnant passing above Eureka at ~500 K on 12/13 May and an ozone mini-hole on 22/23 May.


2013 ◽  
Vol 13 (2) ◽  
pp. 611-624 ◽  
Author(s):  
C. Adams ◽  
K. Strong ◽  
X. Zhao ◽  
A. E. Bourassa ◽  
W. H. Daffer ◽  
...  

Abstract. In spring 2011, the Arctic polar vortex was stronger than in any other year on record. As the polar vortex started to break up in April, ozone and NO2 columns were measured with UV-visible spectrometers above the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05° N, 86.42° W) using the differential optical absorption spectroscopy (DOAS) technique. These ground-based column measurements were complemented by Ozone Monitoring Instrument (OMI) and Optical Spectrograph and Infra-Red Imager System (OSIRIS) satellite measurements, Global Modeling Initiative (GMI) simulations, and meteorological quantities. On 8 April 2011, NO2 columns above PEARL from the DOAS, OMI, and GMI datasets were approximately twice as large as in previous years. On this day, temperatures and ozone volume mixing ratios above Eureka were high, suggesting enhanced chemical production of NO2 from NO. Additionally, GMI NOx (NO + NO2) and N2O fields suggest that downward transport along the vortex edge and horizontal transport from lower latitudes also contributed to the enhanced NO2. The anticyclone that transported lower-latitude NOx above PEARL became frozen-in and persisted in dynamical and GMI N2O fields until the end of the measurement period on 31 May 2011. Ozone isolated within this frozen-in anticyclone (FrIAC) in the middle stratosphere was lost due to reactions with the enhanced NOx. Below the FrIAC (from the tropopause to 700 K), NOx driven ozone loss above Eureka was larger than in previous years, according to GMI monthly average ozone loss rates. Using the passive tracer technique, with passive ozone profiles from the Lagrangian Chemistry and Transport Model, ATLAS, ozone losses since 1 December 2010 were calculated at 600 K. In the air mass that was above Eureka on 20 May 2011, ozone losses reached 4.2 parts per million by volume (ppmv) (58%) and 4.4 ppmv (61%), when calculated using GMI and OSIRIS ozone profiles, respectively. This gas-phase ozone loss led to a more rapid decrease in ozone column amounts above Eureka in April/May 2011 compared with previous years. Ground-based, OMI, and GMI ozone total columns all decreased by more than 100 DU from 15 April to 20 May. Two lows in the ozone columns were also investigated and were attributed to a vortex remnant passing above Eureka at ~500 K on 12/13 May and an ozone mini-hole on 22/23 May.


2010 ◽  
Vol 10 (6) ◽  
pp. 14675-14711
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
F. Goutail

Abstract. The stratospheric ozone loss during the Arctic winters 2004/05–2009/10 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Microwave Limb Sounder (MLS) on Aura by the passive tracer technique. The winter 2004/05 was the coldest of the series with strongest chlorine activation. The ozone loss diagnosed from both model and measurements inside the polar vortex at 475 K ranges from ~1–0.7 ppmv in the warm winter 2005/06 to 1.7 ppmv in the cold winter 2004/05. Halogenated (chlorine and bromine) catalytic cycles contribute to 75–90% of the accumulated ozone loss at this level. At 675 K the lowest loss of ~0.4 ppmv is computed in 2008/09 from both simulations and observations and, the highest loss is estimated in 2006/07 by the model (1.3 ppmv) and in 2004/05 by MLS (1.5 ppmv). Most of the ozone loss (60–75%) at this level results from cycles catalysed by nitrogen oxides (NO and NO2) rather than halogens. At both 475 and 675 K levels the simulated ozone evolution inside the polar vortex is in reasonably good agreement with the observations. The ozone total column loss deduced from the model calculations at the MLS sampling locations inside the vortex ranges between 40 DU in 2005/06 and 94 DU in 2004/05, while that derived from observations ranges between 37 DU and 111 DU in the same winters. These estimates from both Mimosa-Chim and MLS are in general good agreement with those from the ground-based UV-VIS (ultra violet–visible) ozone loss analyses for the respective winters.


2018 ◽  
Author(s):  
Jens-Uwe Grooß ◽  
Rolf Müller ◽  
Reinhold Spang ◽  
Ines Tritscher ◽  
Tobias Wegner ◽  
...  

Abstract. More than three decades after the discovery of the ozone hole, the processes involved in its formation are believed to be understood in great detail. Current state-of-the-art models are able to reproduce the observed chemical composition in the springtime polar stratosphere, especially regarding the quantification of halogen-catalysed ozone loss. However, here we report on a discrepancy between simulations and observations during the less-well studied period of the onset of chlorine activation. During this period, which in the Antarctic is between May and July, model simulations significantly overestimate HCl, one of the key chemical species, inside the polar vortex during polar night. This HCl discrepancy is also observed in the Arctic and present, to varying extents, in three independent models, the Lagrangian chemistry transport model CLaMS as well as the Eulerian models WACCM and TOMCAT/SLIMCAT. The HCl discrepancy points to some unknown process in the formulation of stratospheric chemistry that is currently not represented in the models. Here we characterise the HCl discrepancy in space and time for the Lagrangian Chemistry Transport Model CLaMS, in which HCl in the polar vortex core stays about constant from June to August in the Antarctic while the observations indicate a continuous HCl decrease over this period. The somewhat smaller discrepancies in the models WACCM and TOMCAT/SLIMCAT are also presented. Numerical diffusion in the Eulerian models is identified to be a likely cause for the inter-model differences. Although the missing process has not yet been identified, we investigate different hypotheses on the basis of the characteristics of the discrepancy. An under-estimated uptake of HCl into the PSC particles that consist mainly of H2O and HNO3 cannot explain the discrepancy due to the temperature correlation of the discrepancy. Also, a direct photolysis of particulate HNO3 does not explain the discrepancy since it would also cause changes in late winter which are not observed. The ionisation caused by Galactic Cosmic Rays provides an additional NOx and HOx source that can explain only around 20 % of the discrepancy. A hypothetical decomposition of particulate HNO3 by some other process not dependent on the solar elevation, e.g. involving Galactic Cosmic Rays, may be a possible mechanism to resolve the HCl discrepancy. Since the discrepancy reported here occurs during the beginning of the chlorine activation period, where the ozone loss rates are slow, there is only a minor impact of about 2 % on the overall ozone column loss over the course of Antarctic winter and spring.


2014 ◽  
Vol 14 (23) ◽  
pp. 12855-12869 ◽  
Author(s):  
K. Sagi ◽  
D. Murtagh ◽  
J. Urban ◽  
H. Sagawa ◽  
Y. Kasai

Abstract. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station observed ozone in the stratosphere with high precision from October 2009 to April 2010. Although SMILES measurements only cover latitudes from 38° S to 65° N, the combination of data assimilation methods and an isentropic advection model allows us to quantify the ozone depletion in the 2009/2010 Arctic polar winter by making use of the instability of the polar vortex in the northern hemisphere. Ozone data from both SMILES and Odin/SMR (Sub-Millimetre Radiometer) for the winter were assimilated into the Dynamical Isentropic Assimilation Model for OdiN Data (DIAMOND). DIAMOND is an off-line wind-driven transport model on isentropic surfaces. Wind data from the operational analyses of the European Centre for Medium- Range Weather Forecasts (ECMWF) were used to drive the model. In this study, particular attention is paid to the cross isentropic transport of the tracer in order to accurately assess the ozone loss. The assimilated SMILES ozone fields agree well with the limitation of noise induced variability within the SMR fields despite the limited latitude coverage of the SMILES observations. Ozone depletion has been derived by comparing the ozone field acquired by sequential assimilation with a passively transported ozone field initialized on 1 December 2009. Significant ozone loss was found in different periods and altitudes from using both SMILES and SMR data: The initial depletion occurred at the end of January below 550 K with an accumulated loss of 0.6–1.0 ppmv (approximately 20%) by 1 April. The ensuing loss started from the end of February between 575 K and 650 K. Our estimation shows that 0.8–1.3 ppmv (20–25 %) of O3 has been removed at the 600 K isentropic level by 1 April in volume mixing ratio (VMR).


1994 ◽  
Vol 12 (4) ◽  
pp. 342-354 ◽  
Author(s):  
M. P. Chipperfield

Abstract. A three-dimensional transport model has been used to compare and contrast the extent of processing by polar stratospheric clouds during the northern hemisphere winters of 1991/1992 and 1992/1993. The model has also been used to compare the potential for ozone loss between these two winters. The TOMCAT off-line model is forced using meteorological analyses from the ECMWF. During winter 1992/1993 polar stratospheric clouds (PSCs) in the model persisted into late February/early March, which is much later than in 1991/1992. This persistence of PSCs should have resulted in much more ozone loss in the later winter. Interestingly, however, the extent of PSC processing and ozone loss was greater in January 1992 than January 1993. In January 1992 PSCs occurred at the edge of a distorted polar vortex whilst in January 1993 the PSCs were located at the centre of a much more zonally symmetrical vortex. In March 1993, distortions of the vortex led to the tearing off of vortex air and its mixing into midlatitudes.


2016 ◽  
Author(s):  
E. M. Bednarz ◽  
A. C. Maycock ◽  
N. L. Abraham ◽  
P. Braesicke ◽  
O. Dessens ◽  
...  

Abstract. Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades.


Sign in / Sign up

Export Citation Format

Share Document