negative anomaly
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Sabina Dołęgowska ◽  
Agnieszka Gałuszka ◽  
Zdzisław M. Migaszewski ◽  
Karina Krzciuk

Abstract Background and aim The presence of chlorides in soils, e.g., from de-icing salts may change metal availability to plants. Methods To assess the role of de-icing chlorides on bioavailability of metals, the samples of the rhizosphere soils, roots and shoots of Juncus effusus L. were collected monthly from April to June of 2019 in the vicinity of roads and analyzed for trace (Ag, Cd, Co, Cu, Pb, Zn) and rare earth elements (from La to Lu). Results Concentrations of Cl− were distinctly higher in the shoots than in the roots. Apart from Cd, the concentration sequence of the other metals was as follows: rhizosphere soils>roots>shoots. The bioaccumulation and translocation factors indicated that Cd was the most preferably transported to the shoots as opposed to Ag, Co, Pb and REEs that showed a very low translocation potential. Negative correlations, which were noted between Cu and Co in the shoots and Cl− in soils, revealed their role in salinity stress alleviation. All soil samples showed a positive anomaly of Ce and a negative anomaly of Eu, whereas the shoots showed in turn a negative anomaly of Ce and a distinct positive anomaly of Eu. The lowest salinity factors (K/Na, Ca/Na) of the shoots resulted from an increase of salinity in J. effusus by higher sodium concentrations derived from de-icing NaCl. Conclusions De-icing agents may change the uptake of other elements. In natural habitats, the factors affecting this process include: type of element, soil metal concentrations and interactions, and individual plant features.


Author(s):  
R. L. Thompson ◽  
C. D. Groot Zwaaftink ◽  
D. Brunner ◽  
A. Tsuruta ◽  
T. Aalto ◽  
...  

The effect of the 2018 extreme meteorological conditions in Europe on methane (CH 4 ) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005–2018. For most of Europe, we find no anomaly in 2018 compared to the 2005–2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September–October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005–2017 mean. These results indicate that CH 4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005–2018 was small, and there was negligible impact on the annual CH 4 emissions in 2018 despite the extreme meteorological conditions. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


2021 ◽  
Author(s):  
Mehnaz Abbasi Badhan ◽  
Murad Ahmed Farukh ◽  
Md. Al- Mussabbir Hossen ◽  
Abu Reza Md. Towfiqul I

Abstract Tropical cyclones (TCs) are the most devastating weather phenomena that trigger massive loss of property and life in the coastal areas of the Bay of Bengal (BoB). Scientific understanding of TCs occurrence can aid policy-makers and residents in coastal areas to take necessary actions and appropriate planning in advance. In this study, we aimed to examine the possible linkage of weather parameters with deadly 22 TCs events in the BoB from 1975 to 2014 using principal component analysis, K-mean clustering and General circulation model (GCMs). Results showed that among 22 TCs, cluster 1 belongs to 12 TCs which occurred under the same atmospheric situation when the sea level pressure (SLP) was below 990hPa, and the temperature ranged from 300C to 390C. A deep negative anomaly of SLP and temperature was observed up to 500hPa levels. In contrast, a negative depression was found at 300hPa geopotential height (GPH) over the study area. Cluster 2 consisted of 9 TCs when SLP was below 1000hPa, and the average temperature was 33.50C. A strong negative anomaly was noticed when surface level up to 500 hPa GPH, but dramatically this depression was completely absent at 300hPa geopotential height over the BoB and entire coastal region. Cluster 3 contained only 1 TCs when the atmospheric circumstance was completely diverse, and the SLP was above 1000hPa. The results of the GCM model revealed that the SLP was lower, and the temperature was higher over BoB compared to the North Indian Ocean. We identified the larger depression of SLP and unpredictable temperature anomalies at the upper atmosphere that can trigger an enormous unpredictability throughout the atmospheric level, leading to severe TCs. The outcomes of this study can improve our understanding of weather variables in the upper atmospheric column for forecasting the TCs system more accurately in the future.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 582
Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2017. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2021 ◽  
Author(s):  
Yuanzheng Wen ◽  
Guangxue Wang ◽  
Dan Tao ◽  
Jiayi Zong ◽  
Zhima Zeren ◽  
...  

Abstract In this study, with cross-valid analysis of total electron content (TEC) data of the global ionospheric map (GIM) from GPS and plasma parameters data recorded by China Seismo-Electromagnetic Satellite (CSES), signatures of seismic-ionospheric perturbations related to the 14 July 2019 Mw 7.2 Laiwui earthquake were detected. After distinguishing the solar and geomagnetic activities, three positive temporal anomalies were found around the epicenter 1 day, 3 days and 8 days before the earthquake (14 July 2019) along with a negative anomaly 6 days after the earthquake, which also agrees well with the TEC spatial variations in latitude-longitude-time (LLT) maps. To further confirm the anomalies, the ionospheric plasma parameters (electron, O+ and He+ densities) recorded by the Langmuir probe (LAP) and Plasma Analyzer Package (PAP) onboard CSES were analyzed by using the moving mean method (MMM), which also presented remarkable enhancements along the orbits around the epicenter on day 2, day 4 and day 7 before the earthquake. To make the investigations more convincing, the disturbed orbits were compared with their corresponding four nearest revisiting orbits, whose results indeed indicate the existence of plasma parameters anomalies associated with the Laiwui earthquake. All these results illustrated that the GPS and CSES observed unusual ionospheric perturbations are highly associated with the Mw 7.2 Laiwui earthquake, which also strongly indicates the existence of pre-seismic ionospheric anomalies over the earthquake region.


Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 417
Author(s):  
Kalle Kiik ◽  
Jüri Plado ◽  
Muddaramaiah Lingadevaru ◽  
Syed Hamim Jeelani ◽  
Mateusz Szyszka

The ground magnetic field of the Lonar impact crater (Maharashtra State, India) and its surrounding area was measured and studied utilizing 2.5-dimensional potential field modelling. Field data showed the crater depression is associated with a strong circular negative anomaly with an amplitude of more than 1000 nT. The negative anomaly, however, decreases smoothly while moving from south to north. Most of the crater rim exhibits anomalous positive values. Negative anomalies at the rim are seen in the south–southwestern sections and coinciding in the northeastern section with the Dhar valley. Our study shows that most of the anomaly is caused by the topographic effect and a strong SE directed natural remanent magnetization of Deccan Trap basalts, which are the target of the Lonar-creating projectile. The magnetic anomaly of the relatively weakly magnetized impact-produced allochthonous breccia and post-impact sediments is small, being less than 150 nT.


2020 ◽  
Vol 8 (2) ◽  
pp. 15-21
Author(s):  
Azad Rasul ◽  
Luqman W. Omar

Earthquake every year leads to human and material losses and unpredictability of it by now makes this natural disaster worsen. The objective of the current study was to determine the anomalies in land surface temperature (LST) in areas affected by earthquakes. In this research, three earthquakes (M >6) were studied. Moderate Resolution Imaging Spectroradiometer Aqua and Terra day and night LST data used from 2003 to 2018. The interquartile range (IQR) and mean ± 2σ methods utilized to select anomalies. As a result, based on the IQR method, no prior and after anomaly detected in selected cases and data. Based on mean ± 2σ, usually positive anomaly occurred during daytime. However, negative (or positive) anomaly occurred during the nighttime before the Mexico and Bolivia earthquakes. During 10 days after the earthquake, sometimes a negative anomaly detected.


2020 ◽  
Author(s):  
Anirban Mitra ◽  
Sukanta Dey

<p>Use of trace and rare earth element concentration of terrigenous sedimentary rocks to deduce the composition of their source rocks in the hinterland is a very common and efficient practice. The results of geochemical analysis of the metaquartzarenites located at the basal part of Bababudan and Sigegudda belt, late Archean greenstone sequences of western Dharwar craton show that the sediments were most possibly supplied from Paleo to Mesoarchean granitoids of western Dharwar Craton. Rare earth element patterns of these basal quartzites display fractionated REE pattern in variable degree (La<sub>N</sub>/Yb<sub>N</sub> =1.47-10.63) with moderate to highly fractionated LREE (La<sub>N</sub>/Sm<sub>N</sub>=2.67-8.93) and nearly flat to slighly elevated HREE (Gd<sub>N</sub>/ Yb<sub>N</sub>=0.62-1.29) and a significant Eu negative anomaly (avg. Eu/Eu*=0.67). In general, presence of negative Eu anomaly in clastic rocks reflect the widespread occurrence of granitic rocks in the source area, which possess negative Eu anomaly. On the other hand, mechanical enrichment of zircon (having negative Eu anomaly, high HREE concentration and low La<sub>N</sub>/Yb<sub>N</sub>), if present, will hamper the whole REE pattern of the sediments and necessarily, do not actually mimic the source composition. Here, in our study, the Th/Sc vs Zr/Sc diagram show mineral Zircon has been concentrated by mechanical concentration in the sedimentary rocks. Few quartzite samples which have high Zr content typically exhibit low La<sub>N</sub>/Yb<sub>N</sub> values, reflecting pivotal role of mineral zircon in controlling the REE pattern of the sediments. Hence, in this case, we should be cautious in interpreting of the Eu negative anomaly of the basal quartzites for meticulously identifying their source rock composition. More geochemical and other analytical approaches are required in this regard.</p>


Sign in / Sign up

Export Citation Format

Share Document