scholarly journals Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the lower stratosphere

2009 ◽  
Vol 9 (6) ◽  
pp. 23719-23753
Author(s):  
D. Wurl ◽  
R. G. Grainger ◽  
A. J. McDonald ◽  
T. Deshler

Abstract. A new retrieval algorithm is presented, which is based on the Optimal Estimation (OE) approach and aimed to improve current estimates of aerosol microphysical properties under non-volcanic conditions. The new OE algorithm retrieves log-normal particle size distribution parameters and associated uncertainties from multi-wavelength aerosol extinction data at visible to near infrared wavelengths. The algorithm was tested on synthetic data and then applied to SAGE (Stratospheric Aerosol and Gas Experiment) II data measured in 1999 in the lower stratosphere between 10 and 35 km. Model validation based on synthetic data shows that the new algorithm is able to retrieve the particle size of typical background aerosols accurately and that the retrieved uncertainties are a good estimate of the true errors. Aerosol properties retrieved from measured SAGE II extinction data (recorded in 1999) using the OE approach were compared to Principal Component Analysis (PCA) results retrieved from the same SAGE II data set. The OE surface area and volume densities are observed to be larger than the PCA values by 20–50% and 10–40% whereas the OE effective radii tend to be smaller by about 10–40%. An examination of the OE algorithm biases with in situ data indicates that the new OE estimates are likely to be more realistic than the PCA results. Based on the results of this study we suggest that the new OE retrieval algorithm provides improved estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.

2010 ◽  
Vol 10 (9) ◽  
pp. 4295-4317 ◽  
Author(s):  
D. Wurl ◽  
R. G. Grainger ◽  
A. J. McDonald ◽  
T. Deshler

Abstract. Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm−3 (A) and 0.05 μm3 cm−3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm−3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20–50% and 10–40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.


2015 ◽  
Vol 8 (12) ◽  
pp. 12663-12707 ◽  
Author(s):  
T. E. Taylor ◽  
C. W. O'Dell ◽  
C. Frankenberg ◽  
P. Partain ◽  
H. Q. Cronk ◽  
...  

Abstract. The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April–May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.


2021 ◽  
Author(s):  
Arno Keppens ◽  
Jean-Christopher Lambert ◽  
Daan Hubert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

<p>Part of the space segment of EU’s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI’s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics – like the averaging kernels’ information content – and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI’s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators, enabling users to verify the fitness-for-purpose of the S5P data.</p>


2009 ◽  
Vol 2 (2) ◽  
pp. 679-701 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2020 ◽  
Author(s):  
Arno Keppens ◽  
Daan Hubert ◽  
Jean-Christopher Lambert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

<p>Part of the space segment of EU’s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI’s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics – like the averaging kernels’ information content – and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI’s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators enabling users to verify the fitness-for-purpose of the S5P data.</p>


2021 ◽  
Vol 14 (6) ◽  
pp. 4083-4110
Author(s):  
Meng Gao ◽  
Bryan A. Franz ◽  
Kirk Knobelspiesse ◽  
Peng-Wang Zhai ◽  
Vanderlei Martins ◽  
...  

Abstract. NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of 2023, will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two multi-angle polarimeters (MAPs): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for Planetary EXploration one (SPEXone). The MAP measurements contain rich information on the microphysical properties of aerosols and hydrosols and therefore can be used to retrieve accurate aerosol properties for complex atmosphere and ocean systems. Most polarimetric aerosol retrieval algorithms utilize vector radiative transfer models iteratively in an optimization approach, which leads to high computational costs that limit their usage in the operational processing of large data volumes acquired by the MAP imagers. In this work, we propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems for applications to the HARP2 instrument and its predecessors. Through the evaluation of synthetic datasets for AirHARP (airborne version of HARP2), the NN model achieves a numerical accuracy smaller than the instrument uncertainties, with a running time of 0.01 s in a single CPU core or 1 ms in a GPU. Using the NN as a forward model, we built an efficient joint aerosol and ocean color retrieval algorithm called FastMAPOL, evolved from the well-validated Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm. Retrievals of aerosol properties and water-leaving signals were conducted on both the synthetic data and the AirHARP field measurements from the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign in 2017. From the validation with the synthetic data and the collocated High Spectral Resolution Lidar (HSRL) aerosol products, we demonstrated that the aerosol microphysical properties and water-leaving signals can be retrieved efficiently and within acceptable error. Comparing to the retrieval speed using a conventional radiative transfer forward model, the computational acceleration is 103 times faster with CPU or 104 times with GPU processors. The FastMAPOL algorithm can be used to operationally process the large volume of polarimetric data acquired by PACE and other future Earth-observing satellite missions with similar capabilities.


2019 ◽  
Author(s):  
Oliver Schneising ◽  
Michael Buchwitz ◽  
Maximilian Reuter ◽  
Heinrich Bovensmann ◽  
John P. Burrows ◽  
...  

Abstract. Carbon monoxide (CO) is an important atmospheric constituent affecting air quality and methane (CH4) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadir viewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR) combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with unprecedented level of detail on a global scale introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4 are simultaneously retrieved from TROPOMI's radiance measurements in the 2.3 μm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified DOAS (WFM-DOAS). We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine learning-based quality filter and a shallow learning calibration procedure applied in the post-processing of the XCH4 data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier Transform Spectrometer (FTS) measurements providing realistic error estimates of the satellite data: The XCO data set is characterised by a random error of 5.1 ppb (5.7 %) and a systematic error of 1.9 ppb (2.1 %); the XCH4 data set exhibits a random error of 14.0 ppb (0.8 %) and a systematic error of 4.4 ppb (0.2 %). The natural XCO and XCH4 variations are well captured by the satellite retrievals, which is demonstrated by a high correlation to the reference data (R = 0.97 for XCO and R = 0.91 for XCH4 based on daily averages). We also present selected results from mission start until end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4 emissions from the energy sector.


2014 ◽  
Vol 7 (10) ◽  
pp. 10673-10714 ◽  
Author(s):  
F. A. Stap ◽  
O. Hasekamp ◽  
T. Röckmann

Abstract. An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol parameters. On the other hand, if the cloud screening procedure is too strict, too many clear sky cases, especially near-cloud scenes, will falsely be flagged cloudy. The detrimental effects of cloud contamination as well as the importance of aerosol cloud interactions that can be studied in these near-cloud scenes call for new approaches to cloud screening. Multi-angle, multi-wavelength photo-polarimetric measurements have a unique capability to distinguish between scattering by (liquid) cloud droplets and aerosol particles. In this paper the sensitivity of aerosol retrievals from multi-angle, photo-polarimetric measurements to cloud contamination is investigated and the ability to intrinsically filter the cloud contaminated scenes based on a goodness-of-fit criteria is evaluated. Hereto, an aerosol retrieval algorithm is applied to a partially clouded, synthetic data-set including partial cloud cover as well as non-cloud screened POLDER-3/PARASOL observations It is found that a goodness-of-fit filter, together with a filter on the coarse mode refractive index (mrcoarse > 1.335) and a cirrus screening adequately reject the cloud contaminated scenes. No bias nor larger SD are found in the retrieved parameters for this intrinsic cloud filter compared to the parameters retrieved in a priori cloud screened data-set (using MODIS/AQUA cloud masks) of PARASOL observations. Moreover, less high aerosol load scenes are misinterpreted as cloud contaminated. The retrieved aerosol optical thickness, single scattering albedo and Ångström exponent show good agreement with AERONET observations. Furthermore, the synthetic retrievals give confidence in the ability of the algorithm to correctly retrieve the micro-physical aerosol parameters.


2014 ◽  
Vol 7 (6) ◽  
pp. 1547-1570 ◽  
Author(s):  
C. Viatte ◽  
K. Strong ◽  
K. A. Walker ◽  
J. R. Drummond

Abstract. We present a five-year time series of seven tropospheric species measured using a ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL; Eureka, Nunavut, Canada; 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH) and formaldehyde (H2CO) are investigated, providing a new data set in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the optimal estimation method. The microwindows as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the time series, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The time series of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO time series. These cycles result from the relative contributions of the photochemistry, oxidation and transport as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97 and 0.50 to 3.35, respectively, for the seven target species. Our new data set is compared to previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6concentrations are consistent with negative trends observed over the Northern Hemisphere, attributed to fossil fuel emission decrease. The importance of poleward transport for the atmospheric budgets of HCN and C2H2 is highlighted. Columns and variabilities of CH3OH and HCOOH at PEARL are comparable to previous measurements performed at other remote sites. However, the small columns of H2CO in early May might reflect its large atmospheric variability and/or the effect of the updated spectroscopic parameters used in our retrievals. Overall, emissions from biomass burning contribute to the day-to-day variabilities of the seven tropospheric species observed at Eureka.


2007 ◽  
Vol 7 (9) ◽  
pp. 2399-2411 ◽  
Author(s):  
M. Buchwitz ◽  
I. Khlystova ◽  
H. Bovensmann ◽  
J. P. Burrows

Abstract. Carbon monoxide (CO) is an important atmospheric constituent affecting air quality and climate. SCIAMACHY on ENVISAT is currently the only satellite instrument that can measure the vertical column of CO with nearly equal sensitivity at all altitudes down to the Earth's surface because of its near-infrared nadir observations of reflected solar radiation. Here we present three years' (2003–2005) of SCIAMACHY CO columns consistently retrieved with the latest version of our retrieval algorithm (WFMDv0.6). We describe the retrieval method and discuss the multi-year global CO data set focusing on a comparison with the operational CO column data product of MOPITT. We found reasonable to good agreement (~20%) with MOPITT, with the best agreement for 2004. We present detailed results for various regions (Europe, Middle East, India, China) and discuss to what extent enhanced levels of CO can be detected over populated areas including individual cities. The expected CO signal from cities is close to or even below the detection limit of individual measurements. We show that cities can be identified when averaging long time series.


Sign in / Sign up

Export Citation Format

Share Document