scholarly journals Development of an Electrical Resistivity Tomography Monitoring Concept for the Svelvik CO<sub>2</sub> Field Lab, Norway

2020 ◽  
Vol 54 ◽  
pp. 41-53
Author(s):  
Tobias Raab ◽  
Wolfgang Weinzierl ◽  
Bernd Wiese ◽  
Dennis Rippe ◽  
Cornelia Schmidt-Hattenberger

Abstract. Within the ERA-NET co-funded ACT project Pre-ACT (Pressure control and conformance management for safe and efficient CO2 storage – Accelerating CCS Technologies), a monitoring concept was established to distinguish between CO2 induced saturation and pore pressure effects. As part of this monitoring concept, geoelectrical cross-hole surveys have been designed and conducted at the Svelvik CO2 Field Lab, located on the Svelvik ridge at the outlet of the Drammensfjord in Norway. The Svelvik CO2 Field Lab has been established in summer 2019, and comprises four newly drilled, 100 m deep monitoring wells, surrounding an existing well used for water and CO2 injection. Each monitoring well was equipped with modern sensing systems including five types of fiber-optic cables, conventional- and capillary pressure monitoring systems, as well as electrode arrays for Electrical Resistivity Tomography (ERT) surveys. With a total of 64 electrodes (16 each per monitoring well), a large number of measurement configurations for the ERT imaging is possible, requiring the performance of the tomography to be investigated beforehand by numerical studies. We combine the free and open-source geophysical modeling library pyGIMLi with Eclipse reservoir modeling to simulate the expected behavior of all cross-well electrode configurations during the CO2 injection experiment. Simulated CO2 saturations are converted to changes in electrical resistivity using Archie's Law. Using a finely meshed resistivity model, we simulate the response of all possible measurement configurations, where always two electrodes are located in two corresponding wells. We select suitable sets of configurations based on different criteria, i.e. the ratio between the measured change in apparent resistivity in relation to the geometric factor and the maximum sensitivity in the target area. The individually selected measurement configurations are tested by inverting the synthetic ERT data on a second coarser mesh. The pre-experimental, numerical results show adequate resolution of the CO2 plume. Since less CO2 was injected during the field experiment than originally modeled, we perform post-experimental tests of the selected configurations for their potential to image the CO2 plume using revised reservoir models and injection volumes. These tests show that detecting the small amount of injected CO2 will likely not be feasible.

2020 ◽  
Author(s):  
Tobias Raab ◽  
Wolfgang Weinzierl ◽  
Dennis Rippe ◽  
Bernd Wiese ◽  
Cornelia Schmidt-Hattenberger

&lt;p&gt;Carbon Capture and Storage technology is considered to be able to contribute to a carbon neutral society and is again receiving increased attention in the efforts to reduce CO&lt;sub&gt;2 &lt;/sub&gt;emissions. To ensure safe operation of such CO&lt;sub&gt;2&lt;/sub&gt; storage projects, reliable monitoring technologies are required. Due to the generally high electrical resistivity contrast between CO&lt;sub&gt;2&lt;/sub&gt; and formation water, Electrical Resistivity Tomography (ERT) can be considered one of the most effective geophysical techniques in the monitoring of CO&lt;sub&gt;2&lt;/sub&gt; migration in the subsurface.&lt;/p&gt;&lt;p&gt;Within the ERA-NET co-funded ACT project Pre-ACT (Pressure control and conformance management for safe and efficient CO2 storage - Accelerating CCS Technologies) a CO&lt;sub&gt;2&lt;/sub&gt; injection and monitoring experiment was planned at the Svelvik CO&lt;sub&gt;2&lt;/sub&gt; Field Lab, located on the Svelvik ridge at the outlet of the Drammensfjord in Norway. The Svelvik field lab consists of four 100 m deep monitoring wells, drilled in July 2019, surrounding an existing well used for brine and CO&lt;sub&gt;2&lt;/sub&gt; injection. Each monitoring well is equipped with modern sensing systems including five types of fiber-optic cables, conventional and capillary pressure monitoring systems, as well as 16 ERT electrodes with a spacing of five meters.&lt;/p&gt;&lt;p&gt;With 64 installed electrodes, a large number of measurement configurations is possible. We combine the free and open-source geophysical modeling library pyGIMLI with ECLIPSE reservoir modeling to simulate the expected behavior of all cross-well electrode configurations during a CO&lt;sub&gt;2&lt;/sub&gt; injection experiment. Simulated CO&lt;sub&gt;2 &lt;/sub&gt;saturations are converted to changes in apparent resistivity using Archie's law. Different considerations have to be made to select a suitable set of electrode configurations, i.e. not too large geometric factors, maximum response to the predicted change, as well as sensitivity in the target area. We select sets of configurations based on different criteria, i.e. the ratio between the measured change in resistivity in relation to the geometric factor, the maximum change in apparent resistivity, and maximum sensitivity in the target area. The individually selected measurement schedules are tested by inverting them with different assumed data errors. The numerical results show adequate resolution of the CO&lt;sub&gt;2&lt;/sub&gt; plume.&lt;/p&gt;&lt;p&gt;The CO&lt;sub&gt;2&lt;/sub&gt; injection took place between 27th October 2019 and 5th November 2019. Approximately two metric tonnes of CO&lt;sub&gt;2&lt;/sub&gt; were injected in 65 m depth. Preliminary field results indicate a considerably lower response than predicted by our model. These discrepancies can potentially be explained by oversimplified simulations as well as operational uncertainties. Results from baseline and repeat surveys can therefore support an integrated approach towards a revised static and dynamic model for the test site.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgements:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This work was produced within the SINTEF-coordinated Pre-ACT project (Project No. 271497) funded by RCN (Norway), Gassnova (Norway), BEIS (UK), RVO (Netherlands), and BMWi (Germany) and co-funded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712. We also acknowledge industry partners Total, Equinor, Shell, TAQA.&lt;/p&gt;&lt;p&gt;Finally, we thank the SINTEF-owned Svelvik CO&lt;sub&gt;2&lt;/sub&gt; Field Lab (funded by ECCSEL through RCN, with additional support from Pre-ACT and SINTEF) for assistance during installations and for financial support.&lt;/p&gt;


2021 ◽  
Author(s):  
Kleanthis Simyrdanis ◽  
Nikos Papadopoulos ◽  
Jung-Ho Kim ◽  
Panagiotis Tsourlos ◽  
Ian Moffat

This work explores the applicability and effectiveness of electrical resistivity tomography in mapping archaeological relics in the shallow marine environment. The approach consists of a methodology based on numerical simulation models validated with comparison to field data. Numerical modelling includes the testing of different electrode arrays suitable for multi-channel resistivity instruments (dipole–dipole, pole–dipole, and gradient). The electrodes are placed at fixed positions either floating on the sea surface or submerged at the bottom of the sea. Additional tests are made concerning the resolving capabilities of electrical resistivity tomography with various seawater depths and target characteristics (dimensions and burial depth of the targets). Although valid a priori information, in terms of water resistivity and thickness, can be useful for constraining the inversion, it should be used judiciously to prevent erroneous information leading to misleading results. Finally, an application of the method at a field site is presented not only for verifying the theoretical results but also at the same time for proposing techniques to overcome problems that can occur due to the special environment. Numerical and field electrical resistivity tomography results indicated the utility of the method in reconstructing off-shore cultural features, demonstrating at the same time its applicability to be integrated in wider archaeological projects.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B253-B267 ◽  
Author(s):  
Peter Bergmann ◽  
Cornelia Schmidt-Hattenberger ◽  
Dana Kiessling ◽  
Carsten Rücker ◽  
Tim Labitzke ◽  
...  

Surface-downhole electrical resistivity tomography (SD-ERT) surveys were repeatedly carried out to image [Formula: see text] injected at the pilot storage Ketzin, Germany. The experimental setup combines surface with downhole measurements by using a permanent electrode array that has been deployed in three wells. Two baseline experiments were performed during the site startup and three repeat experiments were performed during the first year of CO2 injection. By the time of the third repeat, approximately 13,500 tons of [Formula: see text] had been injected into the reservoir sandstones at about 650 m depth. Field data and inverted resistivity models showed a resistivity increase over time at the [Formula: see text] injector. The lateral extent of the related resistivity signature indicated a preferential [Formula: see text] migration toward the northwest. Using an experimental resistivity-saturation relationship, we mapped [Formula: see text] saturations by means of the resistivity index method. For the latest repeat, [Formula: see text] saturations show values of up to 70% near the injection well, which matches well with [Formula: see text] saturations determined from pulsed neutron-gamma logging. The presence of environmental noise, reservoir heterogeneities, and irregularities in the well completions are the main sources of uncertainty for the interpretations. The degradation of the permanently installed downhole components is monitored by means of frequently performed resistance checks. In consistency with the SD-ERT data, these resistance checks indicate a long-term resistivity increase near the [Formula: see text] injector. In conclusion, the investigations demonstrate the capability of surface-downhole electrical resistivity tomography to image geologically stored [Formula: see text] at the Ketzin site.


2021 ◽  
Vol 11 (14) ◽  
pp. 6394
Author(s):  
Kleanthis Simyrdanis ◽  
Nikos Papadopoulos ◽  
Dimitrios Oikonomou

The present study explores the applicability and effectiveness of an optimization technique applied to electrical resistivity tomography data. The procedure is based on the Jacobian matrix, where the most sensitive measurements are selected from a comprehensive data set to enhance the least resolvable parameters of the reconstructed model. Two existing inversion programs in two and three dimensions are modified to incorporate this new approach. Both of them are selecting the optimum data from an initial comprehensive data set which is comprised of merged conventional arrays. With the two-dimensional (2-D) optimization approach, the most sensitive measurements are selected from a 2-D survey profile and then a clone of the resulting optimum profile reproduces a three-dimensional (3-D) optimum data set composed of equally spaced parallel lines. In a different approach, with the 3-D optimization technique, the optimum data are selected from a 3-D data set of equally spaced individual parallel lines. Both approaches are compared with Stummer’s optimization technique which is based on the resolution matrix. The Jacobian optimization approach has the advantage of selecting the optimum data set without the need for the solution of the inversion problem since the Jacobian matrix is calculated as part of the forward resistivity problem, thus being faster from previous published approached based on the calculation of the sensitivity matrix. Synthetic 3-D data based on the extension of previous published works for the 2-D optimization case and field data from two case studies in Greece are tested, thus verifying the validity of the present study, where fewer measurements from the initial data set (about 15–50%) are able to reconstruct a model similar with the one produced from the original comprehensive data set.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wei Zhou ◽  
Lichao Nie ◽  
Yongheng Zhang ◽  
Yonghao Pang ◽  
Zhao Dong ◽  
...  

Most of the existing electrical-resistivity-based ahead prospecting methods in tunnel use only the tunnel cavity and tunnel face space to locate the water-bearing structures in front of the tunnel. However, due to the limitation of the narrow available space for arranging electrodes in tunnel, this kind of method is difficult to achieve more accurate image for water-bearing structures. The cross-hole electrical resistivity tomography (CHERT) and borehole-to-surface electrical resistivity tomography (BSERT) methods using borehole space have been proved effective means to achieve better images of deep anomalies on the surface. In this paper, the tunnel-face and borehole ERI (TBERI) method in tunnels was studied. To less affect the construction progress, the pole-pole configuration using a single borehole was studied in this paper. Moreover, the configuration is optimized based on the block weighted CR optimization strategy. After considering the data combination, an effective measurement configuration suitable for TBERI detection was formed. To accelerate calculation, some redundant data are removed from the obtained data after proposed block weighted optimization is conducted. By adopting the proposed configuration, the abnormal objects in the target area in the inversion are more accurate. The effectiveness of proposed configuration is verified by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document