scholarly journals High-resolution mapping of the NO<sub>2</sub> spatial distribution over Belgian urban areas based on airborne APEX remote sensing

2017 ◽  
Vol 10 (5) ◽  
pp. 1665-1688 ◽  
Author(s):  
Frederik Tack ◽  
Alexis Merlaud ◽  
Marian-Daniel Iordache ◽  
Thomas Danckaert ◽  
Huan Yu ◽  
...  

Abstract. We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear-sky conditions over the two largest and most heavily polluted Belgian cities, i.e. Antwerp and Brussels on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 aeroplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing urban plumes to be resolved at the resolution of 60  ×  80 m2. The main sources in the Antwerp area appear to be related to the (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35  ×  1015 molec cm−2, with a mean VCD of 17.4 ± 3.7  ×  1015 molec cm−2. In the Brussels area, smaller levels are found, ranging between 1 and 20  ×  1015 molec cm−2 and a mean VCD of 7.7 ± 2.1  ×  1015 molec cm−2. The overall errors on the retrieved NO2 VCDs are on average 21 and 28 % for the Antwerp and Brussels data sets. Low VCD retrievals are mainly limited by noise (1σ slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements taken in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be, on average, 12 and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine-scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High-resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.

2017 ◽  
Author(s):  
Frederik Tack ◽  
Alexis Merlaud ◽  
Marian-Daniel Iordache ◽  
Thomas Danckaert ◽  
Huan Yu ◽  
...  

Abstract. We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear sky conditions over the three largest and most heavily polluted Belgian cities, i.e. Brussels, Antwerp and Liège on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 airplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing to resolve urban plumes at the resolution of 60 x 80 m2. Main sources in the Antwerp area appear to be related to (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35 x 1015 molec m−2, with a mean VCD of 17.4 ± 3.7 x 1015 molec cm−2. In the Brussels area, smaller levels are found, ranging between 1 and 20 x 1015 molec cm−2 and a mean VCD of 7.7 ± 2.1 x 1015 molec cm−2. The overall error on the retrieved N2 VCDs is on average 21 % and 28 % for the Antwerp and Brussels data set, respectively. Low VCD retrievals are mainly limited by noise (1-sigma slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements performed in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be on average 12 % and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.


2019 ◽  
Vol 12 (11) ◽  
pp. 6091-6111 ◽  
Author(s):  
Laura M. Judd ◽  
Jassim A. Al-Saadi ◽  
Scott J. Janz ◽  
Matthew G. Kowalewski ◽  
R. Bradley Pierce ◽  
...  

Abstract. NASA deployed the GeoTASO airborne UV–visible spectrometer in May–June 2017 to produce high-resolution (approximately 250 m×250 m) gapless NO2 datasets over the western shore of Lake Michigan and over the Los Angeles Basin. The results collected show that the airborne tropospheric vertical column retrievals compare well with ground-based Pandora spectrometer column NO2 observations (r2=0.91 and slope of 1.03). Apparent disagreements between the two measurements can be sensitive to the coincidence criteria and are often associated with large local variability, including rapid temporal changes and spatial heterogeneity that may be observed differently by the sunward-viewing Pandora observations. The gapless mapping strategy executed during the 2017 GeoTASO flights provides data suitable for averaging to coarser areal resolutions to simulate satellite retrievals. As simulated satellite pixel area increases to values typical of TEMPO (Tropospheric Emissions: Monitoring Pollution), TROPOMI (TROPOspheric Monitoring Instrument), and OMI (Ozone Monitoring Instrument), the agreement with Pandora measurements degraded, particularly for the most polluted columns as localized large pollution enhancements observed by Pandora and GeoTASO are spatially averaged with nearby less-polluted locations within the larger area representative of the satellite spatial resolutions (aircraft-to-Pandora slope: TEMPO scale =0.88; TROPOMI scale =0.77; OMI scale =0.57). In these two regions, Pandora and TEMPO or TROPOMI have the potential to compare well at least up to pollution scales of 30×1015 molecules cm−2. Two publicly available OMI tropospheric NO2 retrievals are found to be biased low with respect to these Pandora observations. However, the agreement improves when higher-resolution a priori inputs are used for the tropospheric air mass factor calculation (NASA V3 standard product slope =0.18 and Berkeley High Resolution product slope =0.30). Overall, this work explores best practices for satellite validation strategies with Pandora direct-sun observations by showing the sensitivity to product spatial resolution and demonstrating how the high-spatial-resolution NO2 data retrieved from airborne spectrometers, such as GeoTASO, can be used with high-temporal-resolution ground-based column observations to evaluate the influence of spatial heterogeneity on validation results.


2019 ◽  
Author(s):  
Laura M. Judd ◽  
Jassim A. Al-Saadi ◽  
Scott J. Janz ◽  
Matthew G. Kowalewski ◽  
R. Bradley Pierce ◽  
...  

Abstract. NASA deployed an airborne UV/Visible spectrometer, GeoTASO, in May–June 2017 to produce high resolution (approximately 250 × 250 m), gapless NO2 datasets over the western shore of Lake Michigan and over the Los Angeles Basin. Results show that the airborne tropospheric vertical column retrievals compare well with ground-based Pandora spectrometer column NO2 observations (r2 = 0.91 and slope of 1.03). Apparent disagreements between the two measurements can be sensitive to the coincidence criteria and are often associated with large local variability, including rapid temporal changes and also spatial heterogeneity that may be observed differently by the sunward viewing Pandora observations. The gapless mapping strategy executed during the 2017 GeoTASO flights provides data suitable for averaging to coarser areal resolutions to simulate satellite retrievals. As simulated satellite pixel area increases to values typical of TEMPO, TROPOMI, and OMI, the agreement with Pandora measurements is degraded as localized polluted plumes observed by Pandora are spatially averaged over larger areas (aircraft-to-Pandora slope: TEMPO scale = 0.88; TROPOMI scale = 0.77; OMI scale = 0.57). This behavior suggests that satellite products are representative of individual Pandora observations up to a certain pollution scale that depends on satellite spatial resolution. In these two regions, Pandora and TEMPO or TROPOMI have the potential to compare well up to pollution scales of 30 x 1015 molecules cm−2. Two publicly available OMI tropospheric NO2 retrievals are both found to be biased low with respect to Pandora observations (NASA V3 Standard Product slope = 0.18 and Berkeley High Resolution Product slope = 0.30). However, the agreement improves when higher resolution a priori inputs are used for the tropospheric air mass factor calculation. Overall, this work explores best practices for satellite validation strategies by showing the sensitivity to product spatial resolution and demonstrates how the high spatial resolution NO2 data retrieved from airborne spectrometers, such as GeoTASO, can be used with high temporal resolution surface observations to evaluate the influence of spatial heterogeneity on validation results.


2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


1998 ◽  
Vol 184 ◽  
pp. 245-246 ◽  
Author(s):  
K. Nishiyama ◽  
N. Nakai

Our survey observation is high spatial resolution (16″) by NRO observatory 45 m antenna and have many galaxies of sample. This high resolution observations (16″ = 1.6 kpc at 20 Mpc) could be to resolve the some characteristic structure, typical molecular gas disk, arm - interarm and optical bar.


1980 ◽  
Vol 86 ◽  
pp. 53-55
Author(s):  
M. R. Kundu ◽  
A. P. Rao ◽  
F. T. Erskine ◽  
J. D. Bregman

Solar radio emission at centimeter and millimeter wavelengths originates in the chromosphere and transition region and is a useful probe for the temperature and density in these regions. High spatial resolution observations of the quiet sun provide valuable information on the structure of the solar atmosphere. We have performed high resolution (~ 6″ (E-W) x 15″ (N-S)) observations at 6 cm with the Westerbork Synthesis Radio Telescope (WSRT) in June 1976 in order to search for the radio analog of the supergranulation network and to study the extent and symmetry of limb brightening. The use of the WSRT for high spatial resolution solar mapping has been described by Bregman and Felli (1976), Kundu et al. (1977), and others.


Sign in / Sign up

Export Citation Format

Share Document