scholarly journals Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer

2018 ◽  
Vol 11 (11) ◽  
pp. 5981-6002 ◽  
Author(s):  
Xinhua Zhou ◽  
Qinghua Yang ◽  
Xiaojie Zhen ◽  
Yubin Li ◽  
Guanghua Hao ◽  
...  

Abstract. A sonic anemometer reports three-dimensional (3-D) wind and sonic temperature (Ts) by measuring the time of ultrasonic signals transmitting along each of its three sonic paths, whose geometry of lengths and angles in the anemometer coordinate system was precisely determined through production calibrations and the geometry data were embedded into the sonic anemometer operating system (OS) for internal computations. If this geometry is deformed, although correctly measuring the time, the sonic anemometer continues to use its embedded geometry data for internal computations, resulting in incorrect output of 3-D wind and Ts data. However, if the geometry is remeasured (i.e., recalibrated) and to update the OS, the sonic anemometer can resume outputting correct data. In some cases, where immediate recalibration is not possible, a deformed sonic anemometer can be used because the ultrasonic signal-transmitting time is still correctly measured and the correct time can be used to recover the data through post processing. For example, in 2015, a sonic anemometer was geometrically deformed during transportation to Antarctica. Immediate deployment was critical, so the deformed sonic anemometer was used until a replacement arrived in 2016. Equations and algorithms were developed and implemented into the post-processing software to recover wind data with and without transducer-shadow correction and Ts data with crosswind correction. Post-processing used two geometric datasets, production calibration and recalibration, to recover the wind and Ts data from May 2015 to January 2016. The recovery reduced the difference of 9.60 to 8.93 ∘C between measured and calculated Ts to 0.81 to −0.45 ∘C, which is within the expected range, due to normal measurement errors. The recovered data were further processed to derive fluxes. As data reacquisition is time-consuming and expensive, this data-recovery approach is a cost-effective and time-saving option for similar cases. The equation development can be a reference for related topics.

2018 ◽  
Author(s):  
Xinhua Zhou ◽  
Qinghua Yang ◽  
Xiaojie Zhen ◽  
Yubin Li ◽  
Guanghua Hao ◽  
...  

Abstract. A sonic anemometer (sonic) reports 3-dimensional wind and sonic temperature (Ts) by measuring the time of ultrasonic signals flying along each of its three sonic paths whose geometry of lengths and angles in the sonic coordinate system was precisely determined through production calibrations and was embedded into the sonic’s firmware. If the sonic path geometry is deformed, although correctly measuring the time, the sonic continues to use its embedded geometry data for internal computations, resulting in incorrect data. However, if the geometry is re-measured (i.e. recalibrated) to update sonic firmware, the sonic can resume reporting correct data. In some cases, where immediate recalibration is not possible, a deformed sonic can be used because ultrasonic signal-flying time is still correctly measured. For example, transportation of a sonic to Antarctica in 2015 resulted in a geometrically deformed sonic. Immediate deployment was critical, so the deformed sonic had been used until a replacement arrived in 2016. To recover data from this deformed sonic, equations and algorithms were developed and implemented into the post-processing software to recover wind data with/without transducer shadow correction and Ts data with crosswind correction. Using two geometric datasets, production calibration and recalibration, post-processing recovered the wind and Ts data from May 2015 to January 2016. The recovery reduced the difference of 9.60 to 8.93 °C between measured and calculated Ts to 0.81 to −0.45 °C, which is within the expected range due to normal measurement errors. The recovered data were further processed to derive fluxes. Since such data reacquisition is time-consuming and expensive, this data recovery approach is a cost-effective and time-saving option applicable to similar cases. The equation development can be a reference to the studies on related topics.


2020 ◽  
Vol 12 (23) ◽  
pp. 9943
Author(s):  
Jong-Won Lee ◽  
Deuk-Woo Kim ◽  
Seung-Eon Lee ◽  
Jae-Weon Jeong

This paper summarizes the recent post-occupancy evaluation (POE) method studies and latest literature reviews. According to the research trends, data visualization of an occupant’s feedback is an important perspective and surveys through POE methods have provided a quick and cost-effective approach for gathering and analyzing an occupant’s feedback. Therefore, the objective of this study is to establish a web-based building occupant survey system that incorporates new approaches based on a geographic information system (GIS) tool and open-source spatial information. This paper reports the following to provide the detailed system framework: (1) development requirements from literature reviews; (2) integration of collected data and 3D (three dimensional) spatial information; (3) system processes and user-friendly functions; and (4) pilot test and data visualization. The difference between the proposed platform and existing online survey systems is that in the former the survey responses are linked to the 3D spatial information of the buildings on a map. Thus, the results provide more intuitive insights for building managers and occupants to identify specific performance issues related to the building.


2021 ◽  
Vol 14 (2) ◽  
pp. 1303-1318
Author(s):  
William Thielicke ◽  
Waldemar Hübert ◽  
Ulrich Müller ◽  
Michael Eggert ◽  
Paul Wilhelm

Abstract. Wind data collection in the atmospheric boundary layer benefits from short-term wind speed measurements using unmanned aerial vehicles. Fixed-wing and rotary-wing devices with diverse anemometer technology have been used in the past to provide such data, but the accuracy still has the potential to be increased. A lightweight drone for carrying an industry-standard precision sonic anemometer was developed. Accuracy tests have been performed with the isolated anemometer at high tilt angles in a calibration wind tunnel, with the drone flying in a large wind tunnel and with the full system flying at different heights next to a bistatic lidar reference. The propeller-induced flow deflects the air to some extent, but this effect is compensated effectively. The data fusion shows a substantial reduction of crosstalk (factor of 13) between ground speed and wind speed. When compared with the bistatic lidar in very turbulent conditions, with a 10 s averaging interval and with the unmanned aerial vehicle (UAV) constantly circling around the measurement volume of the lidar reference, wind speed measurements have a bias between −2.0 % and 4.2 % (root-mean-square error (RMSE) of 4.3 % to 15.5 %), vertical wind speed bias is between −0.05 and 0.07 m s−1 (RMSE of 0.15 to 0.4 m s−1), elevation bias is between −1 and 0.7∘ (RMSE of 1.2 to 6.3∘), and azimuth bias is between −2.6 and 7.2∘ (RMSE of 2.6 to 8.0∘). Key requirements for good accuracy under challenging and dynamic conditions are the use of a full-size sonic anemometer, a large distance between anemometer and propellers, and a suitable algorithm for reducing the effect of propeller-induced flow. The system was finally flown in the wake of a wind turbine, successfully measuring the spatial velocity deficit and downwash distribution during forward flight, yielding results that are in very close agreement to lidar measurements and the theoretical distribution. We believe that the results presented in this paper can provide important information for designing flying systems for precise air speed measurements either for short duration at multiple locations (battery powered) or for long duration at a single location (power supplied via cable). UAVs that are able to accurately measure three-dimensional wind might be used as a cost-effective and flexible addition to measurement masts and lidar scans.


2020 ◽  
Vol 2 (2) ◽  
pp. 14

The present study portrays a novel post-processing treatment by using microwave radiations for enhancing the mechanical properties of five commonly used engineering polymers, Poly-amide (PA), Poly-butylene-terephthalate (PBT), Poly-propylene (PP), Poly-carbonate (PC), Acrylonitrile-butadiene-styrene (ABS). The analysis revealed that the crystal structures of the polymers improved after the treatment due to a more favorable rearrangement of crystalline segments within the polymers. Furthermore, tensile properties and tribological performance of microwave treated polymers were found to be significantly better when compared to those of untreated counterparts. The tensile strength, elongation, and wear performance of PA increased by 51%, 286%, and 45%, respectively, only after a treatment of 20 seconds. A similar response was also exhibited by other polymers as well. It was noted that the optimum time for microwave treatment could vary depending on the different crystalline nature of the polymers. The degree of randomness in the molecular chains of semi-crystalline polymers is less; thus, it requires less treatment time. However, for amorphous polymers, as randomness increases, more time is needed. As such, post-processing microwave treatment of polymers has proven beneficial as a cost-effective, time-saving, and environment-friendly technique for enhancing material properties significantly.


2020 ◽  
Vol 15 ◽  
pp. 155892502097930
Author(s):  
Haisang Liu ◽  
Gaoming Jiang ◽  
Zhijia Dong

In this paper a mathematical model of looped warp knitted jacquard fabric is proposed. The technology parameters cover chain notation, threading, jacquard pattern grid and so on are defined based on the matrix. A basic pattern matrix is derived from chain notation and threading using the block matrix. Then combined with the displacement data of jacquard girds, the jacquard pattern matrix is calculated. Finally, the stitch type and stitch position are obtained analyzing the pattern information in the previous matrix. Special stress is laid on the difference between two different displacement data of jacquard girds, RT = 0 and RT = 1, which results in inconsistent lapping for the same jacquard bitmap. The pattern models are implemented and the jacquard lapping bitmap and three-dimensional simulation are generated by a calculating program via Visualstudio2015 using C# and JavaScript. The results show that this model can distinguish two types displacement jacquard information. The parameter input process is simplified and the run time for calculation is also shortened. In addition, with the help of CAD system via the web, priorities including resource sharing, design-time saving, and efficiency improving are achieved.


Author(s):  
Yangtenglong Li ◽  
Minyi Cen ◽  
Tonggang Zhang

Static track inspection methods record the position and direction data through track surveys completed by trolleys that survey a track based on a track control network. The track inspection points must be measured in sections to decrease the likelihood of measurement errors. Certain track inspection points will be measured twice by adjacent stations, and different results will be obtained because of the measurement errors. To improve the regularity of the track, inspection point data from the sectional measurements must be processed, and differences in the results for the same inspection points must be eliminated. Therefore, this paper proposes a novel method referred to as the regularity for processing sectional measurement data (RPSMD) method, which overcomes the disadvantages of the currently available methods of processing inspection points via track-surveying trolleys and also improves the processing of nonoverlapping and overlapping inspection points. The adjustment criterion states that the difference value for the same adjusted overlapping points should be zero, and this criterion can be used to obtain the adjustment equation for each station. Using the adjustment equation, all station points can be corrected and the total regularity of the track points can be guaranteed. According to precisely measured ballastless tracks and their calculated three-dimensional coordinates, the RPSMD method and other available methods are verified by an experimentally designed precise mechanical device. The experimental results show that the accuracy of the nonoverlapping points adjusted by the RPSMD method is improved, and the accuracy is obviously higher than that obtained by the other available methods. Also, the accuracy of the RPSMD-adjusted overlapping points is much higher than that of the nonadjusted points.


2020 ◽  
Author(s):  
William Thielicke ◽  
Waldemar Hübert ◽  
Ulrich Müller

Abstract. Wind data collection in the atmospheric boundary layer benefits from short term wind speed measurements using unmanned aerial vehicles. Fixed and rotary wing devices with diverse anemometer technology have been used in the past to provide such data, but the accuracy still has the potential to be increased. We developed a light weight drone (weight including sensor  45 min) for carrying an industry standard precision sonic anemometer. Accuracy tests have been performed with the isolated anemometer at high tilt angles in a calibration wind tunnel, with the drone flying in a large wind tunnel, and with the full system flying at different heights next to a bistatic lidar reference. The propeller-induced flow deflects the air to some extent, but this effect is compensated effectively. Our data fusion shows no signs of crosstalk between ground speed and wind speed. When compared with the bistatic lidar in very turbulent conditions, with 10 seconds averaging interval and with the UAV constantly circling around the measurement volume of the lidar reference, wind speed measurements have an average absolute bias of 1.9 % (0.073 m s−1), wind elevation average absolute bias is 0.5°, and wind azimuth average absolute bias is 1.5°, indicating excellent accuracy under challenging and dynamic conditions. The system was finally flown in the wake of a wind turbine, successfully measuring the spatial velocity deficit distribution during forward flight, yielding results that are in very close agreement to lidar measurements and the theoretical distribution. We believe that the results presented in this paper can provide important information for designing flying systems for precise air speed measurements either for short duration at multiple locations (battery powered) or for long duration at a single location (power supplied via cable). UAVs that are able to accurately measure three-dimensional wind might be used as cost effective and flexible addition to measurement masts and lidar scans.


2020 ◽  
Author(s):  
Dhanesh Kattipparambil Rajan

Photolithography plays a consequential role in transferring patterns from photomasks to substrates and thereby is an important tool in semiconductor, IC, MEMS and many microstructures’ production. The photomasks are preprinted prior to the photolithographic procedure with certain layouts, and these layouts are transferred to surfaces of materials like silicon during the lithography and finally these surfaces undergo chemical processes by which three dimensional micro features are formed. Therefore photomasks containing specific layouts are the inevitable components in the entire procedure, but unfortunately those are expensive in its nature together with time consuming production formalities. Some of the successful attempts to remove these difficulties are cost effective photomasks and maskless lithography.A system named ‘Maskless Exposure Device’ (MED) is introduced here as my thesis related research and it is intended to replace the expensive photomasks. The device transfers images and layouts created on a computer, easily and effortlessly to different substrate surfaces and can be repeatedly used in photolithography by introducing new drawings on the computer screen and thereby, MED is nothing but a maskless lithographic technique.The device can be mainly used in research and development applications in MEMS production, microfluidic systems, semiconductor and biosensor designs, patterning of cell culture substrates, electrode structures etc. Research on design of microsensors and microactuators could be confronted extremely cost effectively with maximum time saving considerations.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Sign in / Sign up

Export Citation Format

Share Document