scholarly journals Pan-Arctic measurements of wintertime water vapour column using a satellite-borne microwave radiometer

2019 ◽  
Author(s):  
Christopher Perro ◽  
Thomas J. Duck ◽  
Glen Lesins ◽  
Kimberly Strong ◽  
Penny M. Rowe ◽  
...  

Abstract. A methodology for retrieving high-latitude winter water vapour columns from passive microwave satellite measurements from Perro et al. (2016) is extended to use measured surface reflectance ratios under more realistic surface reflection assumptions. Pan-Arctic wintertime water vapour is retrieved from Advanced Technology Microwave Sounder (ATMS) measurements made from January 2012 through March 2015 (December to March). The water vapour retrievals are validated using two ground based instruments: the G-band Vapor Radiometer (GVR) at Barrow, Alaska, and the Extended-Range Atmospheric Emitted Radiance Interferometer (E-AERI) at Eureka, Nunavut. E-AERI was chosen as an additional point of validation compared to Perro et al. (2016) due to the different technology and frequencies employed to determine water vapour column compared to the ATMS and GVR. For water vapour columns less than 6 kg m−2, the biases are +2.6 % and +0.01 % relative to the GVR and E-AERI, respectively. A comparison with radiosonde humidity measurements shows they are dry relative to the ATMS measurements in North America and Western Europe, and moist in Asia and Eastern Europe, with an apparent dependence on radiosonde manufacturer. Reanalyses (ERA-5, ERA-Interim, ASR V2, JRA-55 and NCEP) are systematically drier than the ATMS measurements for water vapour columns less than 6 kg m−2, with relative biases ranging from −10 % to −23 %. These differences could have implications for the understanding of the Arctic water budget and climate.

2015 ◽  
Vol 15 (9) ◽  
pp. 5099-5108 ◽  
Author(s):  
B. Tschanz ◽  
N. Kämpfer

Abstract. The ground-based microwave radiometer MIAWARA-C recorded the upper stratospheric and lower mesospheric water vapour distribution continuously from June 2011 to March 2013 above the Arctic station of Sodankylä, Finland (67.4° N, 26.6° E) without major interruptions and offers water vapour profiles with temporal resolution of 1 h for average conditions. The water vapour time series of MIAWARA-C shows strong periodic variations in both summer and winter related to the quasi-2-day wave. Above 0.1 hPa the amplitudes are strongest in summer. The stratospheric wintertime 2-day wave is pronounced for both winters on altitudes below 0.1 hPa and reaches a maximum amplitude of 0.8 ppmv in November 2011. Over the measurement period, the instrument monitored the changes in water vapour linked to two sudden stratospheric warmings in early 2012 and 2013. Based on the water vapour measurements, the descent rate in the vortex after the warmings is 364 m d−1 for 2012 and 315 m d−1 for 2013.


2015 ◽  
Vol 15 (1) ◽  
pp. 371-392
Author(s):  
B. Tschanz ◽  
N. Kämpfer

Abstract. The ground-based microwave radiometer MIAWARA-C recorded the upper stratospheric and lower mesospheric water vapour distribution continuously from June 2011 to March 2013 above the Arctic station of Sodankylä, Finland (67.4° N, 26.6° E) without major interruptions and offers water vapour profiles with temporal resolution of one hour for average conditions. Over the measurement period, the instrument monitored the changes in water vapour linked to two sudden stratospheric warmings in early 2012 and 2013. Based on the water vapour measurements, the descent rate in the vortex after the warmings is 364 m d−1 for 2012 and 315 m d−1 for 2013. The water vapour time series of MIAWARA-C shows strong periodic variations in both summer and winter related to the quasi two day wave. In the mesosphere the amplitudes are strongest in summer. The stratospheric wintertime two day wave is pronounced for both winters and reaches a maximum amplitude of 0.8 ppmv in November 2011.


2019 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We use 3 years of water vapour and ozone measurements to analyse dynamical events in the polar middle atmosphere such as sudden stratospheric warmings (SSW), polar vortex shifts, water vapour descent rates and periodicities. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C which are co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79° N, 12° E) since September 2015. The almost continuous datasets of water vapour and ozone are characterised by a high time resolution in the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in-situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements whereas AuraMLS measurements show an average offset of 10–15 % depending on altitude but constant in time. Stratospheric GROMOS-C profiles are within 5 % of the satellite instruments AuraMLS and ACE-FTS and the ground-based microwave radiometer OZORAM which is also located at Ny-Ålesund. During these first three years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place and we analysed their signatures in the water vapour and ozone datasets. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour to be 435 m/day on average. In early 2017 distinct increases in mesospheric water vapour of about 2 ppm were observed when the polar vortex was displaced and midlatitude air was brought to Ny-Ålesund. Two major sudden stratospheric warmings took place in March 2016 and February 2018 where ozone enhancements of up to 4 ppm were observed. The zonal wind reversals accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m/day. In the water vapour and ozone time series signatures of atmospheric waves with periods close to 2, 5, 10 and 16 days were found.


2013 ◽  
Vol 6 (1) ◽  
pp. 1311-1359 ◽  
Author(s):  
B. Tschanz ◽  
C. Straub ◽  
D. Scheiben ◽  
K. A. Walker ◽  
G. P. Stiller ◽  
...  

Abstract. Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1) is set up in a way to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km) to 0.017 hPa (75 km). MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels and can therefore provide two independent measurements of the same air mass. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random error of v1.1. In this paper, the quality of v1.1 data is assessed during two measurement campaigns: (1) five months of measurements in the Arctic (Sodankylä, 67.37° N/26.63° E) and (2) nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N/7.46° E). For both campaigns MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitudinal campaign. In general all intercomparisons show high correlation coefficients, above 0.5 at altitudes above 45 km, confirming the ability of MIAWARA-C to monitor temporal variations on the order of days. The biases are generally below 10% and within the estimated systematic uncertainty of MIAWARA-C. No consistent wet or dry bias is identified for MIAWARA-C. In addition, comparisons to the reference instruments indicate the estimated random error of v1.1 to be a realistic measure of the random variation on the retrieved profile.


2013 ◽  
Vol 6 (5) ◽  
pp. 1227-1243 ◽  
Author(s):  
T. J. Garrett ◽  
C. Zhao

Abstract. This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" at 862.5 cm−1, 935.8 cm−1, and 988.4 cm−1 where absorption by water vapour is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in the first two of these micro-windows, constrained by the transmission through clouds of primarily stratospheric ozone emission at 1040 cm−1. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius re, visible optical depth τ, number concentration N, and water path WP are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement programme (ARM) North Slope of Alaska – Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with both ground-based microwave radiometer measurements of liquid water path and a method that uses combined shortwave and microwave measurements to retrieve re, τ and N. Compared to other retrieval methods, advantages of this technique include its ability to characterise thin clouds year round, that water vapour is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies and that it relies on a fairly comprehensive suite of ground based measurements.


2019 ◽  
Vol 19 (15) ◽  
pp. 9927-9947 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We used 3 years of water vapour and ozone measurements to study the dynamics in the Arctic middle atmosphere. We investigated the descent of water vapour within the polar vortex, major and minor sudden stratospheric warmings and periodicities at Ny-Ålesund. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C, which have been co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. Both instruments belong to the Network for the Detection of Atmospheric Composition Change (NDACC). The almost continuous datasets of water vapour and ozone are characterized by a high time resolution of the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C water vapour profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements on average, whereas AuraMLS measurements show an average offset of 10 %–15 % depending on altitude but constant in time. Stratospheric GROMOS-C ozone profiles are on average within 6 % of the SD-WACCM model, the AuraMLS and ACE-FTS satellite instruments and the OZORAM ground-based microwave radiometer which is also located at Ny-Ålesund. During these first 3 years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place, and we analysed their signatures in the water vapour and ozone measurements. Two major sudden stratospheric warmings (SSWs) took place in March 2016 and February 2018 and three minor warmings were observed in early 2017. Ozone-rich air was brought to the pole and during the major warmings ozone enhancements of up to 4 ppm were observed. The reversals of the zonal wind accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m d−1. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour from MIAWARA-C to be 435 m d−1 on average. We find that the water vapour descent rate from SD-WACCM and the vertical velocity w‾* of the residual mean meridional circulation from SD-WACCM are substantially higher than the descent rates of MIAWARA-C. w‾* and the zonal mean water vapour descent rate from SD-WACCM agree within 10 % after the SSW, whereas in autumn w‾* is up to 40 % higher. We further present an overview of the periodicities in the water vapour and ozone measurements and analysed seasonal and interannual differences.


2016 ◽  
Vol 16 (7) ◽  
pp. 4307-4321 ◽  
Author(s):  
Laura Thölix ◽  
Leif Backman ◽  
Rigel Kivi ◽  
Alexey Yu. Karpechko

Abstract. This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990–2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere–Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.


2013 ◽  
Vol 6 (7) ◽  
pp. 1725-1745 ◽  
Author(s):  
B. Tschanz ◽  
C. Straub ◽  
D. Scheiben ◽  
K. A. Walker ◽  
G. P. Stiller ◽  
...  

Abstract. Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle-atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle-atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1) is set up in a such way as to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km) to 0.017 hPa (75 km). For v1.1 the estimated systematic error is approximately 10% for all altitudes. At lower altitudes it is dominated by uncertainties in the calibration, with altitude the influence of spectroscopic and temperature uncertainties increases. The estimated random error increases with altitude from 5 to 25%. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels, and can therefore provide two measurements of the same air mass with independent instrumental noise. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random measurement error of v1.1. In this paper, the quality of v1.1 data is assessed for measurements obtained at two different locations: (1) a total of 25 months of measurements in the Arctic (Sodankylä, 67.37° N, 26.63° E) and (2) nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N, 7.46° E). For both locations MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitude campaigns. In general, all intercomparisons show high correlation coefficients, confirming the ability of MIAWARA-C to monitor temporal variations of the order of days. The biases are generally below 13% and within the estimated systematic uncertainty of MIAWARA-C. No consistent wet or dry bias is identified for MIAWARA-C. In addition, comparisons to the reference instruments indicate the estimated random error of v1.1 to be a realistic measure of the random variation on the retrieved profile between 45 and 70 km.


2017 ◽  
Author(s):  
Raul Cristian Scarlat ◽  
Christian Melsheimer ◽  
Georg Heygster

Abstract. Quantitative retrievals of atmospheric water vapour in the Arctic are faced with numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we are aiming to extend the coverage to low ice cover and ice-free areas. By using modeled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open ocean areas. This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.


Mean characteristics and variability in the spatio-temporal distribution of Arctic water vapour and vapour fluxes are examined using several different rawinsondederived databases. Precipitable water averaged over the polar cap, 70-90° N, peaks in July at 14.0 mm. Large poleward fluxes near the prime meridian reflect transport associated with north Atlantic cyclones and, for most months, a local maximum in available water vapour. The mean vapour flux convergence averaged for the polar cap peaks in September. There is a mean annual excess of precipitation minus evaporation ( P — E ) of 163 mm, with a 78 mm range between extreme years. High P — E is favoured by a meridional circulation accompanied by a more dominant North Atlantic cyclone track. No trend in annual P — E is apparent over the 1974-1991 period.


Sign in / Sign up

Export Citation Format

Share Document