actinic flux
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 5)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Arthur Kremer ◽  
Birger Bohn

<p>Solar actinic radiation is driving atmospheric photochemistry. Consequently, chemistry-transport models rely on accurate model predictions of actinic flux densities to correctly reproduce the essential impact of photolysis processes. Cloud effects are most challenging in this context because of their potentially large influence and their variability. In this study, the effects of clouds, aerosols and ground albedos on solar actinic radiation are investigated using 1D satellite-aided radiative transfer calculations and in-situ aircraft measurements.</p><p>Spectral actinic flux densities in the range 280-650 nm are calculated with the latest version of the libRadtran model utilizing cloud products from geostationary satellites (NASA SatCORPS) as well as aerosol properties (MODIS, MOD08_D3), surface albedos (MODIS, MCD43A3) and total assimilated ozone columns (TEMIS, MSR-2) from polar orbiting satellites as key input parameters. The evaluation of the performance of the model output is made by comparison with data from several campaigns with the research aircraft HALO (High Altitude and Long Range Research Aircraft) where spectral actinic flux densities were measured during a total of around 90 research flights.</p><p>As a prerequisite to study cloud influence, clear-sky cases were investigated in detail to quantify the impact of the aerosol optical thickness and surface albedo on spectral actinic flux densities. Over land, radiative transfer calculations show good agreement with the measured data independent of wavelength and altitude within about 10% under clear sky conditions. Over the ocean the situation is complicated, because ocean surface albedos (OSA) are not available from satellite observations. Available OSA parametrizations, that depend on atmospheric conditions, tend to lead to a slight overestimation of upward-directed actinic flux densities in particular in the visible range, but the agreement for total actinic flux densities is still comparable with that over land. With sufficient agreement of modelled and observed actinic flux densities under clear sky conditions, flight paths with clouds will be included comprising above-cloud, in-cloud and below-cloud conditions. In the model, liquid cloud effects can be parametrized using Mie theory, but ice clouds pose a more complex problem, due to the wide range of possible structures of ice crystals. Finally, the intent of this study is to asses the quality of the radiative transfer modelled actinic flux densities based upon the satellite-derived cloud information.</p>


2020 ◽  
Vol 20 (24) ◽  
pp. 15617-15633
Author(s):  
Wenjie Wang ◽  
David D. Parrish ◽  
Xin Li ◽  
Min Shao ◽  
Ying Liu ◽  
...  

Abstract. In the past decade, average PM2.5 concentrations decreased rapidly under the strong pollution control measures in major cities in China; however, ozone (O3) pollution emerged as a significant problem. Here we examine a unique (for China) 12-year data set of ground-level O3 and precursor concentrations collected at an urban site in Beijing (PKUERS, campus of Peking University), where the maximum daily 8 h average (MDA8) O3 concentration and daytime Ox (O3+NO2) concentration in August increased by 2.3±1.2 ppbv (+3.3±1.8 %) yr−1 and 1.4±0.6 (+1.9±0.8 %) yr−1, respectively, from 2005 to 2016. In contrast, daytime concentrations of nitrogen oxides (NOx) and the OH reactivity of volatile organic compounds (VOCs) both decreased significantly. Over this same time, the decrease of particulate matter (and thus the aerosol optical depth) led to enhanced solar radiation and photolysis frequencies, with near-surface J(NO2) increasing at a rate of 3.6±0.8 % yr−1. We use an observation-based box model to analyze the combined effect of solar radiation and ozone precursor changes on ozone production rate, P(O3). The results indicate that the ratio of the rates of decrease of VOCs and NOx (about 1.1) is inefficient in reducing ozone production in Beijing. P(O3) increased during the decade due to more rapid atmospheric oxidation caused to a large extent by the decrease of particulate matter. This elevated ozone production was driven primarily by increased actinic flux due to PM2.5 decrease and to a lesser extent by reduced heterogeneous uptake of HO2. Therefore, the influence of PM2.5 on actinic flux and thus on the rate of oxidation of VOCs and NOx to ozone and to secondary aerosol (i.e., the major contributor to PM2.5) is important for determining the atmospheric effects of controlling the emissions of the common precursors of PM2.5 and ozone when attempting to control these two important air pollutants.


2020 ◽  
Author(s):  
Wenjie Wang ◽  
David D. Parrish Parrish ◽  
Xin Li ◽  
Min Shao ◽  
Ying Liu ◽  
...  

Abstract. In the past decade, average PM2.5 concentrations decreased rapidly under the strong pollution control measures in major cities in China; however, ozone (O3) pollution emerged as a significant problem. Here we examine a unique (for China) 12-year data set of ground-level O3 and precursor concentrations collected at an urban site in Beijing (PKUERS), where the maximum daily 8 h average (MDA8) O3 concentration and daytime Ox (O3 + NO2) concentration in August increased by 2.3 ± 1.2 ppbv (+3.3 ± 1.8 %) yr−1 and 1.4 ± 0.6 (+1.9 ± 0.8 %) yr−1 respectively from 2006 to 2016. In contrast, daytime concentrations of nitrogen oxides (NOx) and the OH reactivity of volatile organic compounds (VOCs) both decreased significantly. Over this same time, the decrease of particulate matter, and thus the aerosol optical depth, led to enhanced solar radiation and photolysis frequencies, with near-surface j(NO2) increasing at a rate of 3.6 ± 0.8 % yr−1. We use an observation based box model to analyze the combined effect of solar radiation and ozone precursor changes on ozone production rate, P(O3). The results indicate that the ratio of the rates of decrease of VOCs and NOx (about 1.1) is inefficient in reducing ozone production in Beijing. P(O3) increased during the decade due to more rapid atmospheric oxidation caused to a large extent by the decrease of particulate matter. This elevated ozone production was driven primarily by increased actinic flux due to PM2.5 decrease and to a lesser extent by reduced heterogeneous uptake of HO2. Therefore, the influence of PM2.5 on actinic flux and thus on the rate of oxidation of VOCs and NOx to ozone and to secondary aerosol (i.e., the major contributor to PM2.5) is important for determining the atmospheric effects of controlling the emissions of the common precursors of PM2.5 and ozone when attempting to control these two important air pollutants.


2019 ◽  
Vol 19 (14) ◽  
pp. 9413-9429 ◽  
Author(s):  
Wenjie Wang ◽  
Xin Li ◽  
Min Shao ◽  
Min Hu ◽  
Limin Zeng ◽  
...  

Abstract. During the period 2012–2015, photolysis frequencies were measured at the Peking University site (PKUERS), a site representative of Beijing. We present a study of the effects of aerosols on two key photolysis frequencies, j(O1D) and j(NO2). Both j(O1D) and j(NO2) display significant dependence on aerosol optical depth (AOD; 380 nm) with a non-linear negative correlation. With the increase in AOD, the slopes of photolysis frequencies vs. AOD decrease, which indicates that the capacity of aerosols to reduce the actinic flux decreases with AOD. The absolute values of slopes are equal to 4.2–6.9×10-6 and 3.4×10-3 s−1 per AOD unit for j(O1D) and j(NO2) respectively at a solar zenith angle (SZA) of 60∘ and AOD smaller than 0.7, both of which are larger than those observed in a similar, previous study in the Mediterranean. This indicates that the aerosols in Beijing have a stronger extinction effect on actinic flux than absorptive dust aerosols in the Mediterranean. Since the photolysis frequencies strongly depended on the AOD and the SZA, we established a parametric equation to quantitatively evaluate the effect of aerosols on photolysis frequencies in Beijing. According to the parametric equation, aerosols lead to a decrease in seasonal mean j(NO2) by 24 % and 30 % for summer and winter, respectively, and a corresponding decrease in seasonal mean j(O1D) by 27 % and 33 %, respectively, compared to an aerosol-free atmosphere (AOD =0). Based on an observation campaign in August 2012, we used a photochemical box model to simulate the ozone production rate (P(O3)). The simulation results shows that the monthly mean daytime net ozone production rate is reduced by up to 25 % due to the light extinction of aerosols. Through further in-depth analysis, it was found that particulate matter concentrations maintain a high level under the condition of high concentrations of ozone precursors (volatile organic compounds, VOCs, and NOx), which inhibits the production of ozone to a large extent. This phenomenon implies a negative feedback mechanism in the atmospheric environment of Beijing.


2019 ◽  
Author(s):  
Wenjie Wang ◽  
Min Shao ◽  
Min Hu ◽  
Limin Zeng ◽  
Yusheng Wu

Abstract. During the period 2012–2015, the photolysis frequencies were measured at the Peking University site (PKUERS), a representative site of urban Beijing. We present a study of the effects of aerosols on two key photolysis frequencies, j(O1D) and j(NO2). Both j(O1D) and j(NO2) display significant dependence on AOD with a nonlinear negative correlation. With the increase in AOD, the slopes of photolysis frequencies vs AOD decrease, which indicates that the capacity of aerosols to reduce the actinic flux decreases with AOD. In addition, the slopes are equal to 4.21–6.93 × 10−6 s−1 and 3.20 × 10−3 s−1 per AOD unit for j(O1D) and j(NO2) respectively at SZA of 60°, both of which are larger than those observed in the Mediterranean. This indicates that the aerosols in urban Beijing have a stronger extinction on actinic flux than absorptive dust aerosols in the Mediterranean. Since the photolysis frequencies strongly depended on the AOD and the solar zenith angle (SZA), we established a parametric equation to quantitatively evaluate the effect of aerosols on photolysis frequencies in Beijing. According to the parametric equation, aerosols lead to a decrease in j(NO2) by 24.2 % and 30.4 % for summer and winter, respectively, and the corresponding decrease in j(O1D) by 27.3 % and 32.6 % respectively, compared to an aerosol-free atmosphere. Based on an observation campaign in August 2012, we used the photochemical box model to simulate the ozone production rate (P(O3)). The simulation results shows that the monthly average net ozone production rate is reduced by up to 25 % due to the light extinction of aerosols. Through further in-depth analysis, it was found that particulate matter concentrations maintain high level under the condition of high concentrations of ozone precursors (VOCs and NOx), which inhibits the production of ozone to a large extent. This phenomenon implies a negative feedback mechanism in the atmospheric environment of urban Beijing.


2018 ◽  
Vol 11 ◽  
pp. 117862211877480 ◽  
Author(s):  
Yun H Park ◽  
Irina N Sokolik ◽  
Samuel R Hall

The quantification of the UV characteristics of smoke aerosols is valuable to UV Index forecasting, air quality studies, air chemistry studies, and assessments of the impacts on regional and global environmental changes. The wavelength dependence of the light absorption by smoke aerosol has been researched throughout the UV and visible spectral region and varies with fire type and aerosol composition. An objective of this study is to investigate the spectral optical properties (eg, extinction coefficient, single-scattering albedo, and asymmetry parameter), UV actinic fluxes, and radiative forcing of smoke of different fire regimes. The smoke aerosol information (eg, simulated smoke fields from biomass burning emission and vertical distribution of the mass concentration of smoke components) from WRF-Chem is used to distinguish 2 smoke types: flaming and smoldering. To compute the spectral optical properties for the fire regimes, the representative size distribution and spectral refractive index have been implemented into the Mie code, and the optical properties are used to run the tropospheric ultraviolet and visible radiative transfer model. We make comparisons between simulated model and measured actinic flux in the UV and visible spectra under smoke aerosol laden conditions. The WRF-Chem-SMOKE model simulates the smoke plume matched with fire locations and comparable aerosol optical depth (AOD) with satellite measurements. However, the correlation between the simulated and observed AOD is small, which implies that adjusting the fire size for the emission inputs and improving meteorological fields are required for further research. The smoke at selected locations reduces the UV actinic flux and increases the visible actinic flux above the plume at small solar zenith angles. The specific spectral response is dependent on the smoke type. Overall, the results of this investigation show that this approach is valuable to estimate the impact of smoke on UV and visible radiative fluxes.


2017 ◽  
Vol 10 (9) ◽  
pp. 3151-3174 ◽  
Author(s):  
Birger Bohn ◽  
Insa Lohse

Abstract. The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280–650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits  ≈  1  ×  1010 cm−2 s−1 nm−1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5  ×  10−7 and 1  ×  10−7 s−1, respectively, derived from nighttime measurements on the ground (0.3 s integration time, 10 s averages). For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities to zero below atmospheric cutoff wavelengths. The accuracies of photolysis frequencies were determined from linear regressions with data from the double-monochromator reference instrument. The agreement was typically within ±5 %. Because optical-receiver aspects are not specific for the CCD spectroradiometers, they were widely excluded in this work and will be treated in a separate paper, in particular with regard to airborne applications.


2017 ◽  
Author(s):  
Birger Bohn ◽  
Insa Lohse

Abstract. The properties and performance of CCD array spectroradiometers for the measurement of atmospheric spectral actinic flux densities and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like wavelength accuracy, dark signals, dark noise and signal-to-noise ratios. Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. Detection limits around 1×1010cm−2 s−1 nm−1 were derived for spectral actinic flux densities in a 300 nm range (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of solar zenith angles and ozone columns. The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed an increased daytime level of residual noise below atmospheric cutoff wavelengths that is caused by stray light. The influence of instrument noise and stray light induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5×10−7 s−1 and 1×10−7 s−1, respectively. For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities below cutoff wavelengths to zero. The accuracies of photolysis frequencies were determined from linear regressions with reference instrument data. The agreement was typically within ±5 %. Optical receiver aspects were widely excluded in this work and will be treated in a separate paper in particular with regard to airborne applications. Overall, the investigated instruments are clearly suitable for high quality photolysis frequency measurements with high time resolution as required for airborne applications. An example of data from a flight on the research aircraft HALO is presented.


2017 ◽  
Vol 44 (3) ◽  
pp. 1592-1600 ◽  
Author(s):  
Young‐Hee Ryu ◽  
Alma Hodzic ◽  
Gael Descombes ◽  
Samuel Hall ◽  
Patrick Minnis ◽  
...  
Keyword(s):  

2016 ◽  
Vol 16 (21) ◽  
pp. 13837-13851 ◽  
Author(s):  
Maria Zatko ◽  
Joseph Erbland ◽  
Joel Savarino ◽  
Lei Geng ◽  
Lauren Easley ◽  
...  

Abstract. Reactive nitrogen (Nr  =  NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3−) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3−) measurements range from −5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71  ×  107 molec cm−2 s−1 over the course of the field campaign, with a maximum noontime value of 3.1  ×  109 molec cm−2 s−1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly polluted Uintah Basin boundary layer during winter 2014.


Sign in / Sign up

Export Citation Format

Share Document