scholarly journals Laboratory characterisations and intercomparison sounding test of dual thermistor radiosondes for radiation correction

2021 ◽  
Author(s):  
Sang-Wook Lee ◽  
Sunghun Kim ◽  
Young-Suk Lee ◽  
Jae-Keun Yoo ◽  
Sungjun Lee ◽  
...  

Abstract. A dual thermistor radiosonde (DTR) comprising two (white and black) sensors with different emissivities was developed to correct the effects of solar radiation on temperature sensors based on in-situ radiation measurements. Herein, the DTR performance is characterised in terms of the uncertainty via a series of ground-based facilities and an intercomparison sounding test. The DTR characterisation procedure using laboratory facilities is as follows: individually calibrate the temperature of the thermistors in a climate chamber; test the effect of temperature on the resistance reading using radiosonde boards in the climate chamber; individually perform radiation tests on thermistors; and perform parameterisation of the radiation measurement and correction formulas using an upper air simulator with varying temperature, pressure and ventilation speed. These results are combined and applied to the DTR sounding test conducted in July, 2021. Thereafter, the effective irradiance is measured using the temperature difference between the white and black sensors of the DTR. The measured irradiance is then used for the radiation correction of the DTR white sensor. The radiation-corrected temperature of the DTR is mostly consistent with that of a commercial radiosonde (Vaisala, RS41) within the expanded uncertainty (~0.35 ℃) of the DTR at the coverage factor k = 2. Furthermore, the components contributing to the uncertainty of the radiation measurement and correction are analysed. The DTR methodology can improve the accuracy of temperature measurement in the upper air within the framework of the traceability to the International System of Units.

2021 ◽  
Author(s):  
Sang-Wook Lee ◽  
Sunghun Kim ◽  
Young-Suk Lee ◽  
Byung Il Choi ◽  
Woong Kang ◽  
...  

Abstract. An upper-air simulator (UAS) has been developed at the Korea Research Institute of Standards and Science (KRISS) to study the effects of solar irradiation of commercial radiosondes. In this study, the uncertainty of the radiation correction of a Vaisala RS41 temperature sensor is evaluated using the UAS at KRISS. First, the effects of environmental parameters including the temperature (T), pressure (P), ventilation speed (v), and irradiance (S) are formulated in the context of the radiation correction. The considered ranges of T, P, and v are −67 to 20 °C, 5–500 hPa, and 4–7 m·s−1, respectively, with a fixed S0 = 980 W·m−2. Second, the uncertainties in the environmental parameters determined using the UAS are evaluated to calculate their contribution to the uncertainty in the radiation correction. In addition, the effects of rotation and tilting of the sensor boom with respect to the irradiation direction are investigated. The uncertainty in the radiation correction is obtained by combining the contributions of all uncertainty factors. The expanded uncertainty associated with the radiation correction for the RS41 temperature sensor is 0.119 °C at the coverage factor k = 2 (approximately 95 % confidence level). The findings obtained by reproducing the environment of the upper air by using the ground-based facility can provide a basis to increase the measurement accuracy of radiosondes within the framework of traceability to the International System of Units.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 117-125
Author(s):  
Carlos Fernando Hernández Prada ◽  
Mauricio Sáchica Avellaneda ◽  
Alexander Martínez lópez

The National Metrology Institute of Colombia (INM) uses high accuracy calibrators (such as Fluke 5720A/5730A) as AC current reference standards. We describe the implementation at INM of AC-DC current transfer standards by single junction thermal converters (SJTC) to improve the accuracy of AC measurements and give traceability to the International System of Units (SI) within the country. We describe the measurement model, present the uncertainty budget estimation accordingly to the Guide to the Expression of Uncertainty in Measurement (GUM) and analyze the effect of temperature and electrostatic on measurements. Expanded uncertainties between 68 μA/A and 2.6 mA/A were obtained for the calibration of high accuracy calibrators and transconductance amplifiers for currents from 5 mA to 20 A (40 Hz to 5 kHz). The obtained measurement results are compatible with calibration results from the National Metrology Institutes like Centro Nacional de Metrología from Mexico (CENAM) and Accredited International Laboratories like Fluke.


2018 ◽  
Vol 11 (6) ◽  
pp. 3351-3372 ◽  
Author(s):  
Myriam Guillevic ◽  
Martin K. Vollmer ◽  
Simon A. Wyss ◽  
Daiana Leuenberger ◽  
Andreas Ackermann ◽  
...  

Abstract. For many years, the comparability of measurements obtained with various instruments within a global-scale air quality monitoring network has been ensured by anchoring all results to a unique suite of reference gas mixtures, also called a “primary calibration scale”. Such suites of reference gas mixtures are usually prepared and then stored over decades in pressurised cylinders by a designated laboratory. For the halogenated gases which have been measured over the last 40 years, this anchoring method is highly relevant as measurement reproducibility is currently much better (< 1 %, k = 2 or 95 % confidence interval) than the expanded uncertainty of a reference gas mixture (usually > 2 %). Meanwhile, newly emitted halogenated gases are already measured in the atmosphere at pmol mol−1 levels, while still lacking an established reference standard. For compounds prone to adsorption on material surfaces, it is difficult to evaluate mixture stability and thus variations in the molar fractions over time in cylinders at pmol mol−1 levels. To support atmospheric monitoring of halogenated gases, we create new primary calibration scales for SF6 (sulfur hexafluoride), HFC-125 (pentafluoroethane), HFO-1234yf (or HFC-1234yf, 2,3,3,3-tetrafluoroprop-1-ene), HCFC-132b (1,2-dichloro-1,1-difluoroethane) and CFC-13 (chlorotrifluoromethane). The preparation method, newly applied to halocarbons, is dynamic and gravimetric: it is based on the permeation principle followed by dynamic dilution and cryo-filling of the mixture in cylinders. The obtained METAS-2017 primary calibration scales are made of 11 cylinders containing these five substances at near-ambient and slightly varying molar fractions. Each prepared molar fraction is traceable to the realisation of SI units (International System of Units) and is assigned an uncertainty estimate following international guidelines (JCGM, 2008), ranging from 0.6 % for SF6 to 1.3 % (k = 2) for all other substances. The smallest uncertainty obtained for SF6 is mostly explained by the high substance purity level in the permeator and the low SF6 contamination of the matrix gas. The measured internal consistency of the suite ranges from 0.23 % for SF6 to 1.1 % for HFO-1234yf (k=1). The expanded uncertainty after verification (i.e. measurement of the cylinders vs. each others) ranges from 1 to 2 % (k = 2). This work combines the advantages of SI-traceable reference gas mixture preparation with a calibration scale system for its use as anchor by a monitoring network. Such a combined system supports maximising compatibility within the network while linking all reference values to the SI and assigning carefully estimated uncertainties. For SF6, comparison of the METAS-2017 calibration scale with the scale prepared by SIO (Scripps Institution of Oceanography, SIO-05) shows excellent concordance, the ratio METAS-2017 / SIO-05 being 1.002. For HFC-125, the METAS-2017 calibration scale is measured as 7 % lower than SIO-14; for HFO-1234yf, it is 9 % lower than Empa-2013. No other scale for HCFC-132b was available for comparison. Finally, for CFC-13 the METAS-2017 primary calibration scale is 5 % higher than the interim calibration scale (Interim-98) that was in use within the Advanced Global Atmospheric Gases Experiment (AGAGE) network before adopting the scale established in the present work.


2020 ◽  
pp. 26-32
Author(s):  
M. I. Kalinin ◽  
L. K. Isaev ◽  
F. V. Bulygin

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.


2020 ◽  
Vol 87 (4) ◽  
pp. 258-265
Author(s):  
Luca Callegaro

AbstractThe revision of the International System of Units (SI), implemented since 20 May 2019, has redefined the unit of electric current, the ampere ( A), linking it to a fixed value of the elementary charge. This paper discusses the new definition and the realisation of the electrical units by quantum electrical metrology standards, which every year become more and more accessible, reliable and user friendly.


Sign in / Sign up

Export Citation Format

Share Document