national metrology institute
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 39)

H-INDEX

11
(FIVE YEARS 1)

Metrologia ◽  
2021 ◽  
Vol 59 (1A) ◽  
pp. 06003
Author(s):  
I J Kim ◽  
C-Y Yi ◽  
N C Díaz ◽  
S-W Wang ◽  
Y-C Lin ◽  
...  

Main text The APMP/TCRI Dosimetry Working Group performed the APMP.RI(I)-K5 key comparison of the air kerma for 137Cs in 2014. Five national metrology institutes (NMIs) took part in the comparison. Two commercial ionization chambers were used as transfer instruments and circulated among the participants. The results showed that the maximum difference between the participants and the Bureau International des Poids et Mesures, evaluated using the comparison data of the linking laboratories of the Korea Research Institute of Standards and Science and the National Metrology Institute of Japan, was less than 0.5% within the expanded uncertainty. This comparison supports the equivalence of the calibration capabilities of the participating laboratories. The results predate the publication of ICRU report 90, therefore, the revision of the data reflecting the effects of the ICRU report 90 on the degrees of equivalences of the participant laboratories is presented in Appendix C. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).


Author(s):  
Junya Ishii ◽  
Tadahiro Kurosawa ◽  
Masahiro Kato

Abstract Accurate radiation dosimetry is required for radiation protection in various environments. Therefore, dosemeters and dose-rate meters must be calibrated in standard radiation fields. The National Metrology Institute of Japan (NMIJ) expands the energy range of X-ray reference field measurement up to 450 kV using a cylindrical graphite-walled cavity ionization chamber. Departure from the condition of the Spencer-Attix cavity theory was evaluated by comparing the measurement results obtained using the cavity ionization and the free-air ionization chambers, which are used as the primary standard up to a tube voltage of 250 kV. The calibration coefficients found using the spherical ionization chamber were in good agreement with those obtained by the free-air ionization chamber within relative standard uncertainties (k = 1) for N-200 and N-250 X-ray fields. Consistent calibration coefficients were obtained in the energy range 300–450 kV.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Bruno Hay ◽  
Olivier Beaumont ◽  
Guillaume Failleau ◽  
Nolwenn Fleurence ◽  
Marc Grelard ◽  
...  

AbstractThe French National Metrology Institute LNE has improved its homemade laser flash apparatus in order to perform accurate and reliable measurements of thermal diffusivity of homogeneous solid materials at very high temperature. The inductive furnace and the associated infrared (IR) detection systems have been modified and a specific procedure for the in situ calibration of the used radiation thermometers has been developed. This new configuration of the LNE’s diffusivimeter has been then applied for measuring the thermal diffusivity of molybdenum up to 2200 °C, tungsten up to 2400 °C and isotropic graphite up to 3000 °C. Uncertainties associated with these high temperature thermal diffusivity measurements have been assessed for the first time according to the principles of the “Guide to the Expression of Uncertainty in Measurement” (GUM). Detailed uncertainty budgets are here presented in the case of the isotropic graphite for measurements performed at 1000 °C, 2000 °C and 3000 °C. The relative expanded uncertainty (coverage factor k = 2) of the thermal diffusivity measurement is estimated to be between 3 % and 5 % in the whole temperature range for the three investigated refractory materials.


2021 ◽  
Author(s):  
Claudia Fernanda Rodriguez ◽  

Diffusing the legal time in Colombia is one missional assessment of INM (National Metrology Institute of Colombia). This is done via a public IP through an NTP server (Network Time Protocol Server) disciplined to the National Standard of Time and Frequency. So, the companies can synchronize their servers, but they do not have certainty about the difference that exists between the time of the client-server and the legal time of the INM server because there is not a constant verification implemented by themselves. In Colombia, the demand for the legal time service has increased because it is used by many companies due to the rise of innovative applications such as time-stamp, digital signature, electronic invoice, and economic transactions. This has an impact on the economic environment of a country for world trade. For this reason, the INM of Colombia implemented a new service to measure the synchronization offset with the legal time, which allows the companies to have a new service that generates reliability respecting the time they use to provide their services. Inspired by the INM contribution to the international comparison Universal Time Coordinated (UTC) and the intercomparison of the National Standards of Time and Frequency implemented through the SIM time scale (SIMT) using GPS (Global Positioning System), the INM developed a customized application for national comparison using NTP. As a result, this is the first remote measurement service as evidence of metrology for digital transformation in Colombia in the field of time and frequency.


2021 ◽  
Vol 14 (9) ◽  
pp. 6181-6193
Author(s):  
Nobuyuki Aoki ◽  
Shigeyuki Ishidoya ◽  
Yasunori Tohjima ◽  
Shinji Morimoto ◽  
Ralph F. Keeling ◽  
...  

Abstract. A study was conducted to compare the δ(O2/N2) scales used by four laboratories engaged in atmospheric δ(O2/N2) measurements. These laboratories are the Research Institute for Environmental Management Technology, Advanced Industrial Science and Technology (EMRI/AIST); the National Institute for Environmental Studies (NIES); Tohoku University (TU); and Scripps Institution of Oceanography (SIO). Therefore, five high-precision standard mixtures for the O2 molar fraction gravimetrically prepared by the National Metrology Institute of Japan, AIST (NMIJ/AIST) with a standard uncertainty of less than 5 per meg (0.001 ‰) were used as round-robin standard mixtures. EMRI/AIST, NIES, TU, and SIO reported the analyzed values of the standard mixtures on their own δ(O2/N2) scales, and the values were compared with the δ(O2/N2) values gravimetrically determined by NMIJ/AIST (the NMIJ/AIST scale). The δ(O2/N2) temporal drift in the five standard mixtures during the intercomparison experiment from May 2017 to March 2020 was corrected based on the δ(O2/N2) values analyzed before and after the laboratory measurements by EMRI/AIST. The scales are compared based on offsets in zero and span. The relative span offsets of EMRI/AIST, TU, NIES, and SIO scales against the NMIJ/AIST scale were -0.11%±0.10%, -0.10%±0.13%, 3.39 %±0.13 %, and 0.93 %±0.10 %, respectively. The largest offset corresponded to a 0.30 Pg yr−1 decrease and increase in global estimates for land biospheric and oceanic CO2 uptakes based on trends in atmospheric CO2 and δ(O2/N2). The deviations in the measured δ(O2/N2) values on the laboratory scales from the NMIJ/AIST scale are 65.8±2.2, 425.7±3.1, 404.5±3.0, and 596.4±2.4 per meg for EMRI/AIST, TU, NIES, and SIO, respectively. The difference between atmospheric δ(O2/N2) values observed at Hateruma Island (HAT; 24.05∘ N, 123.81∘ E), Japan, by EMRI/AIST and NIES were reduced from -329.3±6.9 to -6.6±6.8 per meg by converting their scales to the NMIJ/AIST scale.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 284
Author(s):  
Hideaki Yamashita ◽  
Hirokazu Nagashima ◽  
Hideki Yamada

<p>In the field of pressure measurement, numerous interlaboratory comparisons are carried out among National Metrology Institutes (NMIs) using a pressure transfer standard to verify the degrees of equivalence. Here, the Yokogawa electric corporation has been producing a series of digital manometers using a silicon resonant sensor developed independently. This sensor demonstrates excellent long-term stability and has thus been adopted as the pressure transfer standard by many NMIs and has been subsequently well received. The pressure transfer standard is known as the resonant silicon gauge (RSG) among NMIs. From December 2016, the National Metrology Institute of Japan (NMIJ), the Advanced Industrial Science and Technology (AIST) institute, and Yokogawa initiated a collaborative research with the aim of improving the characteristics of the RSGs and developing a portable transfer standard using a new silicon resonant sensor. The new RSG was adjusted using a standard device calibrated by either NMIJ or Yokogawa. The measurement values of the standard device were corrected with the calibration results and used as the standard values for adjustment of the new RSG. The linearity of the new RSG adjusted via the proposed method was improved compared with that of a conventional RSG.</p>


2021 ◽  
Vol 14 (3) ◽  
pp. 2317-2326
Author(s):  
Iris de Krom ◽  
Wijnand Bavius ◽  
Ruben Ziel ◽  
Elizabeth A. McGhee ◽  
Richard J. C. Brown ◽  
...  

Abstract. A primary mercury gas standard was developed at Van Swinden Laboratory (VSL) to establish an International System of Units (SI)-traceable reference point for mercury concentrations at emission and background levels in the atmosphere. The majority of mercury concentration measurements are currently made traceable to the empirically determined vapour pressure of mercury. The primary mercury gas standard can be used for the accurate and precise calibration of analytical systems used for measuring mercury concentrations in air. It has been especially developed to support measurements related to ambient air monitoring (1–2 ng m−3), indoor and workplace-related mercury concentration levels according to health standards (from 50 ng m−3 upwards) as well as stationary source emissions (from 1 µg m−3 upwards). The primary mercury gas standard is based on diffusion according to ISO 6154-8. Calibration gas mixtures are obtained by combining calibrated mass flows of nitrogen and air through a generator holding diffusion cells containing elemental mercury. In this paper, we present the results of comparisons between the primary gas standard and mercury calibration methods maintained by NPL (National Physical Laboratory in the United Kingdom), a National Metrology Institute (NMI), and the Jozef Stefan Institute (JSI), a Designated Institute (DI). The calibration methods currently used at NPL and JSI are based on the bell-jar calibration apparatus in combination with the Dumarey equation or a NIST (National Institute of Standards and Technology in the United States) reference material. For the comparisons, mercury was sampled on sorbent traps to obtain transfer standards with levels between 2 and 1000 ng with an expanded uncertainty not exceeding 3 % (k=2). The comparisons performed show that the results for the primary gas standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary gas standard and the Dumarey equation.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 117-125
Author(s):  
Carlos Fernando Hernández Prada ◽  
Mauricio Sáchica Avellaneda ◽  
Alexander Martínez lópez

The National Metrology Institute of Colombia (INM) uses high accuracy calibrators (such as Fluke 5720A/5730A) as AC current reference standards. We describe the implementation at INM of AC-DC current transfer standards by single junction thermal converters (SJTC) to improve the accuracy of AC measurements and give traceability to the International System of Units (SI) within the country. We describe the measurement model, present the uncertainty budget estimation accordingly to the Guide to the Expression of Uncertainty in Measurement (GUM) and analyze the effect of temperature and electrostatic on measurements. Expanded uncertainties between 68 μA/A and 2.6 mA/A were obtained for the calibration of high accuracy calibrators and transconductance amplifiers for currents from 5 mA to 20 A (40 Hz to 5 kHz). The obtained measurement results are compatible with calibration results from the National Metrology Institutes like Centro Nacional de Metrología from Mexico (CENAM) and Accredited International Laboratories like Fluke.


2021 ◽  
Author(s):  
Nobuyuki Aoki ◽  
Shigeyuki Ishidoya ◽  
Yasunori Tohjima ◽  
Shinji Morimoto ◽  
Ralph F. Keeling ◽  
...  

Abstract. A study was conducted to compare the δ(O2/N2) scales used by four laboratories engaged in atmospheric δ(O2/N2) measurements. These laboratories are the Research Institute for Environmental Management Technology, Advanced Industrial Science and Technology (EMRI/AIST), the National Institute for Environmental Studies (NIES), Tohoku University (TU), and Scripps Institution of Oceanography (SIO). Therefore, five high-precision standard mixtures for O2 molar fraction gravimetrically prepared by the National Metrology Institute of Japan (NMIJ), AIST (NMIJ/AIST) with a standard uncertainty of less than 5 per meg were used as round-robin standard mixtures. EMRI/AIST, NIES, TU, and SIO reported the analysed values of the standard mixtures on their own δ(O2/N2) scales, and the values were compared with the δ(O2/N2) values gravimetrically determined by NMIJ/AIST (the NMIJ/AIST scale). The δ(O2/N2) temporal drift in the five standard mixtures during the inter-comparison experiment was corrected based on the δ(O2/N2) values analysed before and after the experiments by EMRI/AIST. The scales are compared based on offsets in zero and span. The span offsets from the NMIJ/AIST scale ranged from −0.17 % to 3.3 %, corresponding with the difference of 0.29 Pg yr−1 in the estimates for land biospheric and oceanic CO2 uptakes. The zero offsets from the NMIJ/AIST scale are −581.0 ± 2.2, −221.4 ± 3.1, −243.0 ± 3.0, and −50.7 ± 2.4 per meg for EMRI/AIST, TU, NIES, and SIO, respectively. The atmospheric δ(O2/N2) values observed at Hateruma Island (HAT; 24.05° N, 123.81° E), Japan, by EMRI/AIST and NIES became comparable by converting their scales to the NMIJ/AIST scale.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 287
Author(s):  
C. Forssén ◽  
I. Silander ◽  
D. Szabo ◽  
G. Jönsson ◽  
M. Bjerling ◽  
...  

A transportable refractometer for assessment of kPa pressures with ppm level precision is presented. It is based on the GAs MOdulation Refractometry (GAMOR) methodology, making it resistant to fluctuations and drifts. At the National Metrology Institute at RISE, Sweden, the system assessed pressures in the 4.3 - 8.7 kPa range with sub-ppm precision (0.5 - 0.9 ppm). The system was thereafter disassembled, packed, and transported 1040 km to Umea University, where it, after unpacking and reassembling, demonstrated a similar precision (0.8 - 2.1 ppm). This shows that the system can be disassembled, packed, transported, unpacked, and reassembled with virtually unchanged performance.


Sign in / Sign up

Export Citation Format

Share Document