scholarly journals Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements

2021 ◽  
Author(s):  
Nora Mettig ◽  
Mark Weber ◽  
Alexei Rozanov ◽  
John P. Burrows ◽  
Pepijn Veefkind ◽  
...  

Abstract. Vertical ozone profiles from combined spectral measurements in the ultraviolet and infrared spectral range were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP, which are flying in loose formation three minutes apart in the same orbit. A previous study of ozone profiles retrieved exclusively from TROPOMI UV spectra showed that the vertical resolution in the troposphere is clearly limited (Mettig et al, 2021). The vertical resolution and the vertical extent of the ozone profiles is improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The combined retrieval particularly improves the accuracy of the retrieved tropospheric ozone and to a lesser degree stratospheric ozone up to 30 km. An increase in the degree-of-freedom by one was found in the UV+IR retrieval compared to the UV-only retrieval. Compared to previous publications, which investigated combinations of UV and IR observations from the pairs OMI/TES and GOME-2/IASI, the degree of freedom is lower, which is attributed to the reduced spectral resolution of CrIS compared to TES or IASI. Tropospheric lidar and ozonesondes were used to validate the ozone profiles and tropospheric ozone column (TOC). From the comparison with tropospheric lidars both ozone profiles and TOCs show smaller biases for the retrieved data from the combined UV+IR observation than the UV observations alone. While the TOCs show good agreement, the profiles have a positive bias of more than 20 % between 10 and 15 km. The reason is probably a positive stratospheric bias from the IR retrieval. The comparison of the UV+IR and UV ozone profiles up to 30 km with MLS (Microwave Limb Sounder) demonstrates the improvement of the UV+IR profile in the stratosphere.

2021 ◽  
Vol 14 (9) ◽  
pp. 6057-6082
Author(s):  
Nora Mettig ◽  
Mark Weber ◽  
Alexei Rozanov ◽  
Carlo Arosio ◽  
John P. Burrows ◽  
...  

Abstract. The TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm to retrieve vertical profiles of ozone from space-borne observations in nadir-viewing geometry has been developed at the Institute of Environmental Physics (IUP) of the University of Bremen and applied to the TROPOspheric Monitoring Instrument (TROPOMI) L1B spectral data version 2. Spectral data between 270 and 329 nm are used for the retrieval. A recalibration of the measured radiances is done using ozone profiles from MLS/Aura. Studies with synthetic spectra show that individual profiles in the stratosphere can be retrieved with an uncertainty of about 10 %. In the troposphere, the retrieval errors are larger depending on the a priori profile used. The vertical resolution above 18 km is about 6–10 km, and it degrades to 15–25 km below. The vertical resolution in the troposphere is strongly dependent on the solar zenith angle (SZA). The ozone profiles retrieved from TROPOMI with the TOPAS algorithm were validated using data from ozonesondes and stratospheric ozone lidars. Above 18 km, the comparison with sondes shows excellent agreement within less than ±5 % for all latitudes. The standard deviation of mean differences is about 10 %. Below 18 km, the relative mean deviation in the tropics and northern latitudes is still quite good, remaining within ±20 %. At southern latitudes, larger differences of up to +40 % occur between 10 and 15 km. The standard deviation is about 50 % between 7–18 km and about 25 % below 7 km. The validation of stratospheric ozone profiles with ground-based lidar measurements also shows very good agreement. The relative mean deviation is below ±5 % between 18–45 km, with a standard deviation of 10 %. TOPAS retrieval results for 1 d of TROPOMI observations were compared to ozone profiles from the Microwave Limb Sounder (MLS) on the Aura satellite and the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP). The relative mean difference was found to be largely below ±5 % between 20–50 km, except at very high latitudes.


2013 ◽  
Vol 6 (2) ◽  
pp. 239-249 ◽  
Author(s):  
J. Bak ◽  
J. H. Kim ◽  
X. Liu ◽  
K. Chance ◽  
J. Kim

Abstract. South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer) instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite) platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI) Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error) derived from the 270–330 nm (OMI) and 300–330 nm (GEMS) wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS) Microwave Limb Sounder (MLS). The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those between OMI and MLS below ~3 hPa (~40 km), except with slightly larger biases and larger standard deviations by up to 5%. At pressure altitudes above ~3 hPa, GEMS retrievals show strong influence of a priori and large differences with MLS, which, however, can be sufficiently improved by using better a priori information. The GEMS-MLS differences show negative biases of less than 4% for stratospheric column ozone, with standard deviations of 1–3%, while OMI retrievals show similar agreements with MLS except for 1% smaller biases at middle and high latitudes. Based on the comparisons, we conclude that GEMS will measure tropospheric ozone and stratospheric ozone columns with accuracy comparable to that of OMI and ozone profiles with slightly worse performance than that of OMI below ~3 hPa.


2020 ◽  
Author(s):  
Paul T. Griffiths ◽  
Lee T. Murray ◽  
Guang Zeng ◽  
Alexander T. Archibald ◽  
Louisa K. Emmons ◽  
...  

Abstract. The evolution of tropospheric ozone from 1850 to 2100 has been studied using data from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We evaluate long-term changes using coupled atmosphere-ocean chemistry-climate models, focusing on the CMIP historical and ScenarioMIP ssp370 experiments, for which detailed tropospheric ozone diagnostics were archived. The model ensemble has been evaluated against a suite of surface, sonde, and satellite observations of the past several decades, and found to reproduce well the salient spatial, seasonal and decadal variability and trends. The tropospheric ozone burden increases from 244 ± 30 Tg in 1850 to a mean value of 348 ± 15 Tg for the period 2005–2014, an increase of 40 %. Modelled present day values agree well with previous determinations (ACCENT: 336 ± 27 Tg; ACCMIP: 337 ± 23 Tg and TOAR: 340 ± 34 Tg). In the ssp370 experiments, the ozone burden reaches a maximum of 402 ± 36 Tg in 2090, before declining slightly to 396 ± 32 Tg by 2100. The ozone budget has been examined over the same period using lumped ozone production (PO3) and loss (LO3) diagnostics. There are large differences (30 %) between models in the preindustrial period, with the difference narrowing to 15 % in the present day. Both ozone production and chemical loss terms increase steadily over the period 1850 to 2100, with net chemical production (PO3-LO3) reaching a maximum around the year 2000. The residual term, which contains contributions from stratosphere-troposphere transport reaches a minimum around the same time, while dry deposition increases steadily across the experiment. Differences between the model residual terms are explained in terms of variation in tropopause height and stratospheric ozone burden.


Author(s):  
M. R. Mobasheri ◽  
H. Shirazi

This article aims to increase the accuracy of Ozone data from tropospheric column (TOC) of the OMI and TES satellite instruments. To validate the estimated amount of satellite data, Ozonesonde data is used. The vertical resolution in both instruments in the tropospheric atmosphere decreases so that the degree of freedom signals (DOFS) on the average for TES is reduced to 2 and for OMI is reduced to1. But this decline in accuracy in estimation of tropospheric ozone is more obvious in urban areas so that estimated ozone in both instruments alone in non-urban areas show a high correlation with Ozonesonde. But in urban areas this correlation is significantly reduced, due to the ozone pre-structures and consequently an increase on surface-level ozone in urban areas. In order to improve the accuracy of satellite data, the average tropospheric ozone data from the two instruments were used. The aim is to increase the vertical resolution of ozone profile and the results clearly indicate an increase in correlations, but nevertheless the satellite data have a positive bias towards the earth data. To reduce the bias, with the solar flux and nitrogen dioxide values and surface temperatures are calculated as factors of ozone production on the earth’s surface and formation of mathematical equations based on coefficients for each of the mentioned values and multiplication of these coefficients by satellite data and repeated comparison with the values of Ozonesonde, the results showed that bias in urban areas is greatly reduced.


2005 ◽  
Vol 22 (12) ◽  
pp. 1864-1874 ◽  
Author(s):  
Paul Lehmann

Abstract An analysis is described that provides an additive correction for referencing the vertical ozone profiles of the Australian Brewer–Mast (BM; October 1984–December 1990) ozonesonde to those of the electrochemical concentration cell (ECC; January 1991–December 1999) using approximately coincident Stratospheric Aerosol and Gas Experiment (SAGE) II satellite ozone profile data. Because Australian BM ozonesondes may have been prepared differently from BM ozonesondes elsewhere, other results of intercomparisons between the two different ozonesonde types cannot be used. However, the present results are consistent with previously reported intercomparison studies between these two ozonesonde types, where the lowest altitude tropospheric ozone levels measured by the BM ozonesonde were approximately 25% lower than the values measured by the ECC ozonesonde. The magnitudes of the BM corrections were found to be generally less than about 0.5 mPa in partial pressure up to an altitude of approximately 28 km. Without direct intercomparison measurements, the corrections given here provide the only means of removing the discontinuity in the Melbourne ozonesonde dataset that occurred when ECC ozonesondes replaced the BM ozonesondes in 1991.


2014 ◽  
Vol 7 (10) ◽  
pp. 3529-3548 ◽  
Author(s):  
J. T. Sullivan ◽  
T. J. McGee ◽  
G. K. Sumnicht ◽  
L. W. Twigg ◽  
R. M. Hoff

Abstract. Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric–tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16–19% from 0 to 1.5 km, 10–18% from 1.5 to 3 km, and 11–25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore–Washington, D.C. area.


2012 ◽  
Vol 5 (5) ◽  
pp. 6733-6762 ◽  
Author(s):  
J. Bak ◽  
J. H. Kim ◽  
X. Liu ◽  
K. Chance ◽  
J. Kim

Abstract. Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer) instrument into a Geostationary (GEO) platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI) Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error) derived from the 270–330 nm (OMI) and 300–330 nm (GEMS) wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on tropospheric ozone retrievals is insignificant. However, the stratospheric ozone information decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ∼1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ∼20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution EOS Microwave Limb Sounder (MLS). The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those between OMI and MLS above ∼3 hPa (∼40 km) except with slightly larger biases and larger standard deviations by up to 5%. At pressure altitudes above ∼3 hPa, GEMS retrievals show strong influence of a priori and large differences with MLS, which, however, can be sufficiently improved by using better a priori information. The GEMS-MLS differences show negative biases of less than 4% for stratospheric column ozone, with standard deviations of 1–3%, while OMI retrievals show similar agreements with MLS except for 1% smaller biases at mid and high latitudes. Based on the comparisons, we conclude that GEMS will measure tropospheric ozone and stratospheric ozone columns with accuracy comparable to that of OMI and ozone profiles with slightly worse performance than that of OMI below ∼3 hPa.


2017 ◽  
Vol 17 (17) ◽  
pp. 10269-10290 ◽  
Author(s):  
Jesse W. Greenslade ◽  
Simon P. Alexander ◽  
Robyn Schofield ◽  
Jenny A. Fisher ◽  
Andrew K. Klekociuk

Abstract. Stratosphere-to-troposphere transport (STT) provides an important natural source of ozone to the upper troposphere, but the characteristics of STT events in the Southern Hemisphere extratropics and their contribution to the regional tropospheric ozone budget remain poorly constrained. Here, we develop a quantitative method to identify STT events from ozonesonde profiles. Using this method we estimate the seasonality of STT events and quantify the ozone transported across the tropopause over Davis (69° S, 2006–2013), Macquarie Island (54° S, 2004–2013), and Melbourne (38° S, 2004–2013). STT seasonality is determined by two distinct methods: a Fourier bandpass filter of the vertical ozone profile and an analysis of the Brunt–Väisälä frequency. Using a bandpass filter on 7–9 years of ozone profiles from each site provides clear detection of STT events, with maximum occurrences during summer and minimum during winter for all three sites. The majority of tropospheric ozone enhancements owing to STT events occur within 2.5 and 3 km of the tropopause at Davis and Macquarie Island respectively. Events are more spread out at Melbourne, occurring frequently up to 6 km from the tropopause. The mean fraction of total tropospheric ozone attributed to STT during STT events is  ∼ 1. 0–3. 5 % at each site; however, during individual events, over 10 % of tropospheric ozone may be directly transported from the stratosphere. The cause of STTs is determined to be largely due to synoptic low-pressure frontal systems, determined using coincident ERA-Interim reanalysis meteorological data. Ozone enhancements can also be caused by biomass burning plumes transported from Africa and South America, which are apparent during austral winter and spring and are determined using satellite measurements of CO. To provide regional context for the ozonesonde observations, we use the GEOS-Chem chemical transport model, which is too coarsely resolved to distinguish STT events but is able to accurately simulate the seasonal cycle of tropospheric ozone columns over the three southern hemispheric sites. Combining the ozonesonde-derived STT event characteristics with the simulated tropospheric ozone columns from GEOS-Chem, we estimate STT ozone flux near the three sites and see austral summer dominated yearly amounts of between 5. 7 and 8. 7 × 1017 molecules cm−2 a−1.


2015 ◽  
Vol 8 (4) ◽  
pp. 4273-4305 ◽  
Author(s):  
J. T. Sullivan ◽  
T. J. McGee ◽  
T. Leblanc ◽  
G. K. Sumnicht ◽  
L. W. Twigg

Abstract. The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near field signals to be more appropriately smoothed. With these revisions, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt has reduced the mean profile bias by 3.5% and large reductions in bias (near 15 %) were apparent above 4.5 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes agree well with the retrieval and are mostly within the TROPOZopt retrieval uncertainty bars (which implies that this exercise was quite successful). A final mean percent difference plot is shown between the TROPOZopt and ozonesondes, which indicates that the new operational retrieval is mostly within 10% of the ozonesonde measurement and no systematic biases are present. The authors believe that this analysis has significantly added to the confidence in the TROPOZ instrument and provides a standard for current and future TOLNet algorithms.


2021 ◽  
Vol 21 (16) ◽  
pp. 12385-12411
Author(s):  
Roeland Van Malderen ◽  
Dirk De Muer ◽  
Hugo De Backer ◽  
Deniz Poyraz ◽  
Willem W. Verstraeten ◽  
...  

Abstract. Starting in 1969 and comprising three launches a week, the Uccle (Brussels, Belgium) ozonesonde dataset is one of longest and densest in the world. Moreover, as the only major change was the switch from Brewer-Mast (BM) to electrochemical concentration cell (ECC) ozonesonde types in 1997 (when the emissions of ozone-depleting substances peaked), the Uccle time series is very homogenous. In this paper, we briefly describe the efforts that were undertaken during the first 3 decades of the 50 years of ozonesonde observations to guarantee the homogeneity between ascent and descent profiles, under changing environmental conditions (e.g. SO2), and between the different ozonesonde types. This paper focuses on the 50-year-long Uccle ozonesonde dataset and aims to demonstrate its past, present, and future relevance to ozone research in two application areas: (i) the assessment of the temporal evolution of ozone from the surface to the (middle) stratosphere, and (ii) as the backbone for validation and stability analysis of both stratospheric and tropospheric satellite ozone retrievals. Using the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) multiple linear regression model (SPARC/IO3C/GAW, 2019), we found that the stratospheric ozone concentrations at Uccle have declined at a significant rate of around 2 % per decade since 1969, which is also rather consistent over the different stratospheric levels. This overall decrease can mainly be assigned to the 1969–1996 period with a rather consistent rate of decrease of around −4 % per decade. Since 2000, a recovery of between +1 % per decade and +3 % per decade of the stratospheric ozone levels above Uccle has been observed, although it is not significant and is not seen for the upper stratospheric levels measured by ozonesondes. Throughout the entire free troposphere, a very consistent increase in the ozone concentrations of 2 % per decade to 3 % per decade has been measured since both 1969 and 1995, with the trend since 1995 being in almost perfect agreement with the trends derived from the In-service Aircraft for a Global Observing System (IAGOS) ascent/descent profiles at Frankfurt. As the number of tropopause folding events in the Uccle time series has increased significantly over time, increased stratosphere-to-troposphere transport of recovering stratospheric ozone might partly explain these increasing tropospheric ozone concentrations, despite the levelling-off of (tropospheric) ozone precursor emissions and notwithstanding the continued increase in mean surface ozone concentrations. Furthermore, we illustrate the crucial role of ozonesonde measurements for the validation of satellite ozone profile retrievals. With the operational validation of the Global Ozone Monitoring Experiment-2 (GOME-2), we show how the Uccle dataset can be used to evaluate the performance of a degradation correction for the MetOp-A/GOME-2 UV (ultraviolet) sensors. In another example, we illustrate that the Microwave Limb Sounder (MLS) overpass ozone profiles in the stratosphere agree within ±5 % with the Uccle ozone profiles between 10 and 70 hPa. Another instrument on the same Aura satellite platform, the Tropospheric Emission Spectrometer (TES), is generally positively biased with respect to the Uccle ozonesondes in the troposphere by up to ∼ 10 ppbv, corresponding to relative differences of up to ∼ 15 %. Using the Uccle ozonesonde time series as a reference, we also demonstrate that the temporal stability of those last two satellite retrievals is excellent.


Sign in / Sign up

Export Citation Format

Share Document