scholarly journals Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO<sub>2</sub> retrievals

2012 ◽  
Vol 5 (8) ◽  
pp. 2081-2094 ◽  
Author(s):  
C. Frankenberg ◽  
C. O'Dell ◽  
L. Guanter ◽  
J. McDuffie

Abstract. With the advent of dedicated greenhouse gas space-borne spectrometers sporting high resolution spectra in the O2 A-band spectral region (755–774 nm), the retrieval of chlorophyll fluorescence has become feasible on a global scale. If unaccounted for, however, fluorescence can indirectly perturb the greenhouse gas retrievals as it perturbs the oxygen absorption features. As atmospheric CO2 measurements are used to invert net fluxes at the land–atmosphere interface, a bias caused by fluorescence can be crucial as it will spatially correlate with the fluxes to be inverted. Avoiding a bias and retrieving fluorescence accurately will provide additional constraints on both the net and gross fluxes in the global carbon cycle. We show that chlorophyll fluorescence, if neglected, systematically interferes with full-physics multi-band XCO2 retrievals using the O2 A-band. Systematic biases in XCO2 can amount to +1 ppm if fluorescence constitutes 1% to the continuum level radiance. We show that this bias can be largely eliminated by simultaneously fitting fluorescence in a full-physics based retrieval. If fluorescence is the primary target, a dedicated but very simple retrieval based purely on Fraunhofer lines is shown to be more accurate and very robust even in the presence of large scattering optical depths. We find that about 80% of the surface fluorescence is retained at the top-of-atmosphere, even for cloud optical thicknesses around 2–5. We further show that small instrument modifications to future O2 A-band spectrometer spectral ranges can result in largely reduced random errors in chlorophyll fluorescence, paving the way towards a more dedicated instrument exploiting solar absorption features only.

2012 ◽  
Vol 5 (2) ◽  
pp. 2487-2527 ◽  
Author(s):  
C. Frankenberg ◽  
C. O'Dell ◽  
L. Guanter ◽  
J. McDuffie

Abstract. With the advent of dedicated greenhouse-gas space-borne spectrometers sporting high resolution spectra in the O2 A-band spectral region (755–774 nm), the retrieval of chlorophyll fluorescence has become feasible on a global scale. If unaccounted for, however, fluorescence can indirectly perturb the greenhouse gas retrievals as it perturbs the oxygen absorption features. As atmospheric CO2 measurements are used to invert net fluxes at the land-atmosphere interface, a bias caused by fluorescence can be crucial as it will spatially correlate with the fluxes to be inverted. Avoiding a bias and retrieving fluorescence accurately will provide additional constraints on both the net and gross fluxes in the global carbon cycle. We show that chlorophyll fluorescence, if neglected, systematically interferes with full-physics multi-band XCO2 retrievals using the O2 A-band. Systematic biases in XCO2 can amount to +1 ppm if fluorescence constitutes 1% to the continuum level radiance. We show that this bias can be largely eliminated by simultaneously fitting fluorescence in a full-physics based retrieval. If fluorescence is the primary target, a dedicated but very simple retrieval based purely on Fraunhofer lines is shown to be more accurate and very robust even in the presence of large scattering optical depths. We find that about 80% of the surface fluorescence is retained at the top-of-atmosphere even for cloud optical thicknesses around 2–5. We further show that small instrument modifications to future O2 A-band spectrometer spectral ranges can result in largely reduced random errors in chlorophyll fluorescence, paving the way towards a more dedicated instrument exploiting solar absorption features only.


2020 ◽  
Author(s):  
Erik van Schaik ◽  
Maurits L. Kooreman ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Olaf N. E. Tuinder ◽  
...  

Abstract. Solar-induced fluorescence (SIF) data from satellites are increasingly used as a proxy for photosynthetic activity by vegetation, and as a constraint on gross primary production. Here we develop an improved retrieval algorithm to retrieve mid-morning (09:30 hrs local time) SIF estimates on the global scale from GOME-2 sensor on the Metop-A satellite (GOME-2A) for the period 2007–2019. Our new SIFTER v2 algorithm improves over a previous version by using a narrower spectral window that avoids strong oxygen absorption and is less sensitive to water vapour absorption, by constructing stable reference spectra from a 6-year period (2007–2012) of atmospheric spectra over the Sahara, and by applying a latitude-dependent zero-level adjustment that accounts for biases in the data product. We generated stable, good-quality SIF retrievals between January 2007 and June 2013, when GOME-2A degradation in the near infrared was still limited. After the narrowing of the GOME-2A swath in July 2013, we characterized the throughput degradation of the level-1 data in order to derive reflectance corrections and apply these for the SIF retrievals between July 2013 and December 2018. SIFTER v2 data compares well with the independent NASA v2.8 data product. Especially in the evergreen tropics, SIFTER v2 no longer shows the underestimates against other satellite products that were seen in SIFTER v1. The new data product includes uncertainty estimates for individual observations, and is best used for mostly clear-sky scenes, and when spectral residuals remain below a certain spectral autocorrelation threshold. Our results support the use of SIFTER v2 data to be used as an independent constraint on photosynthetic activity on regional to global scales.


2020 ◽  
Vol 13 (8) ◽  
pp. 4295-4315
Author(s):  
Erik van Schaik ◽  
Maurits L. Kooreman ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Olaf N. E. Tuinder ◽  
...  

Abstract. Solar-induced fluorescence (SIF) data from satellites are increasingly used as a proxy for photosynthetic activity by vegetation and as a constraint on gross primary production. Here we report on improvements in the algorithm to retrieve mid-morning (09:30 LT) SIF estimates on the global scale from the GOME-2 sensor on the MetOp-A satellite (GOME-2A) for the period 2007–2019. Our new SIFTER (Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval) v2 algorithm improves over a previous version by using a narrower spectral window that avoids strong oxygen absorption and being less sensitive to water vapour absorption, by constructing stable reference spectra from a 6-year period (2007–2012) of atmospheric spectra over the Sahara and by applying a latitude-dependent zero-level adjustment that accounts for biases in the data product. We generated stable, good-quality SIF retrievals between January 2007 and June 2013, when GOME-2A degradation in the near infrared was still limited. After the narrowing of the GOME-2A swath in July 2013, we characterised the throughput degradation of the level-1 data in order to derive reflectance corrections and apply these for the SIF retrievals between July 2013 and December 2018. SIFTER v2 data compare well with the independent NASA v2.8 data product. Especially in the evergreen tropics, SIFTER v2 no longer shows the underestimates against other satellite products that were seen in SIFTER v1. The new data product includes uncertainty estimates for individual observations and is best used for mostly clear-sky scenes and when spectral residuals remain below a certain spectral autocorrelation threshold. Our results support the use of SIFTER v2 data being used as an independent constraint on photosynthetic activity on regional to global scales.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 341
Author(s):  
Pauliina Salmi ◽  
Matti A. Eskelinen ◽  
Matti T. Leppänen ◽  
Ilkka Pölönen

Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for collecting and analyzing hyperspectral data are currently needed. The purpose of this study was to test a commercial, easy-to-use hyperspectral camera to monitor the growth of different algae strains in liquid samples. Indices calculated from wavebands from transmission imaging were compared against algae abundance and wet biomass obtained from an electronic cell counter, chlorophyll a concentration, and chlorophyll fluorescence. A ratio of selected wavebands containing near-infrared and red turned out to be a powerful index because it was simple to calculate and interpret, yet it yielded strong correlations to abundances strain-specifically (0.85 < r < 0.96, p < 0.001). When all the indices formulated as A/B, A/(A + B) or (A − B)/(A + B), where A and B were wavebands of the spectral camera, were scrutinized, good correlations were found amongst them for biomass of each strain (0.66 < r < 0.98, p < 0.001). Comparison of near-infrared/red index to chlorophyll a concentration demonstrated that small-celled strains had higher chlorophyll absorbance compared to strains with larger cells. The comparison of spectral imaging to chlorophyll fluorescence was done for one strain of green algae and yielded strong correlations (near-infrared/red, r = 0.97, p < 0.001). Consequently, we described a simple imaging setup and information extraction based on vegetation indices that could be used to monitor algae cultures.


2005 ◽  
Vol 620 (2) ◽  
pp. 1140-1150 ◽  
Author(s):  
P. A. Gerakines ◽  
J. J. Bray ◽  
A. Davis ◽  
C. R. Richey

2021 ◽  
Author(s):  
Georg Wohlfahrt ◽  
Albin Hammerle ◽  
Barbara Rainer ◽  
Florian Haas

&lt;p&gt;Ongoing changes in climate (both in the means and the extremes) are increasingly challenging grapevine production in the province of South Tyrol (Italy). Here we ask the question whether sun-induced chlorophyll fluorescence (SIF) observed remotely from space can detect early warning signs of stress in grapevine and thus help guide mitigation measures.&lt;/p&gt;&lt;p&gt;Chlorophyll fluorescence refers to light absorbed by chlorophyll molecules that is re-emitted in the red to far-red wavelength region. Previous research at leaf and canopy scale indicated that SIF correlates with the plant photosynthetic uptake of carbon dioxide as it competes for the same energy pool.&lt;/p&gt;&lt;p&gt;To address this question, we use time series of two down-scaled SIF products (GOME-2 and OCO-2, 2007/14-2018) as well as the original OCO-2 data (2014-2019). As a benchmark, we use several vegetation indices related to canopy greenness, as well as a novel near-infrared radiation-based vegetation index (2000-2019). Meteorological data fields are used to explore possible weather-related causes for observed deviations in remote sensing data. Regional DOC grapevine census data (2000-2019) are used as a reference for the analyses.&lt;/p&gt;


2015 ◽  
Vol 8 (6) ◽  
pp. 2589-2608 ◽  
Author(s):  
P. Köhler ◽  
L. Guanter ◽  
J. Joiner

Abstract. Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last few years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY). Building upon the previous work by Guanter et al. (2013) and Joiner et al. (2013), our approach provides a solution for the selection of the number of free parameters. In particular, a backward elimination algorithm is applied to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF at 740 nm from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we compare our results to existing SIF data sets, examine uncertainties and use our GOME-2 retrievals to show empirically the relatively low sensitivity of the SIF retrieval to cloud contamination.


Author(s):  
Russell Doughty ◽  
Xiangming Xiao ◽  
Philipp Köhler ◽  
Christian Frankenberg ◽  
Yuanwei Qin ◽  
...  

2013 ◽  
Vol 6 (11) ◽  
pp. 3313-3323 ◽  
Author(s):  
H. Herbin ◽  
L. C. Labonnote ◽  
P. Dubuisson

Abstract. This article is the second in a series of studies investigating the benefits of multispectral measurements to improve the atmospheric parameter retrievals. In the first paper, we presented an information content (IC) analysis from the thermal infrared (TIR) and shortwave infrared (SWIR) bands of Thermal And Near infrared Sensor for carbon Observations–Fourier Transform Spectrometer (TANSO-FTS) instrument dedicated to greenhouse gas retrieval in clear sky conditions. This second paper presents the potential of the spectral synergy from TIR to visible for aerosol characterization, and their impact on the retrieved CO2 and CH4 column concentrations. The IC is then used to determine the most informative spectral channels for the simultaneous retrieval of greenhouse gas total columns and aerosol parameters. The results show that a channel selection spanning the four bands can improve the computation time and retrieval accuracy. Therefore, the spectral synergy allows obtaining up to almost seven different aerosol parameters, which is comparable to the most informative dedicated instruments. Moreover, a channel selection from the TIR to visible bands allows retrieving CO2 and CH4 total columns simultaneously in the presence of one aerosol layer with a similar accuracy to using all channels together to retrieve each gas separately in clear sky conditions.


Sign in / Sign up

Export Citation Format

Share Document