scholarly journals An analytical system for studying the stable isotopes of carbon monoxide using continuous flow-isotope ratio mass spectrometry (CF-IRMS)

2015 ◽  
Vol 8 (2) ◽  
pp. 2067-2092 ◽  
Author(s):  
S. L. Pathirana ◽  
C. van der Veen ◽  
M. E. Popa ◽  
T. Röckmann

Abstract. In the atmosphere, carbon monoxide (CO) is the major sink for the hydroxyl radical (OH •), has multiple anthropogenic and natural sources and considerable spatial and seasonal variability. Measurements of CO isotopic composition are useful in constraining the strengths of its individual source and sink processes and thus its global cycle. A fully automated system for δ13C and δ18O analysis has been developed to extract CO from an air sample, convert CO into carbon dioxide (CO2) using the Schütze reagent, and then determine the isotopic composition in an isotope ratio mass spectrometer (IRMS). The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is only 1–3% of the typical sample size. The repeatability is 0.1‰ for δ13C and 0.2‰ for δ18O. The peak area allows simultaneous determination of the mole fraction with an analytical repeatability of ~0.7 nmol mol−1 for 100 mL of typical ambient air (185.4 nmol mol−1 of CO). A single, automated, measurement is performed in 18 min, so multiple measurements can be combined conveniently to improve precision.

2015 ◽  
Vol 8 (12) ◽  
pp. 5315-5324 ◽  
Author(s):  
S. L. Pathirana ◽  
C. van der Veen ◽  
M. E. Popa ◽  
T. Röckmann

Abstract. A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol−1, or 1–3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol−1 for 100 mL of ambient air (185.4 nmol mol−1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.


2016 ◽  
Author(s):  
Thomas Röckmann ◽  
Simon Eyer ◽  
Carina van der Veen ◽  
Maria E. Popa ◽  
Béla Tuzson ◽  
...  

Abstract. High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +(0.05 ± 0.03) ‰ for δ13C and –(3.6 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European domain.


2008 ◽  
Vol 8 (6) ◽  
pp. 19561-19604
Author(s):  
M. Saurer ◽  
A. S. H. Prévôt ◽  
J. Dommen ◽  
J. Sandradewi ◽  
U. Baltensperger ◽  
...  

Abstract. Carbon monoxide in the atmosphere is originating from various combustion and oxidation processes. Recently, the proportion of CO resulting from the combustion of wood for domestic heating may have increased due to political measures promoting this renewable energy source. Here, we used the stable isotope composition of CO (δ13C and δ18O) for the characterization of different CO sources in Switzerland, along with other indicators for traffic and wood combustion (NOx-concentration, aerosol light absorption at different wavelengths). We assessed diurnal variations of the isotopic composition of CO at 3 sites during winter: a village site dominated by domestic heating, a site close to a motorway and a rural site. The isotope ratios of wood combustion emissions were studied at a test facility, indicating significantly lower δ18O of CO from wood combustion compared to traffic emissions. At the village and the motorway site, we observed very pronounced diurnal δ18O-variations of CO with an amplitude of up to 8‰. Solving the isotope mass balance equation for three distinct sources (wood combustion, traffic, clean background air) resulted in diurnal patterns consistent with other indicators for wood burning and traffic. The average night-time contribution of wood-burning to total CO was 70% at the village site, 47% at the motorway site and 28% at the rural site based on the isotope mass balance. As this analysis showed a strong sensitivity towards the pure source isotope values, we additionally applied a combined CO/NOx-isotope model for verification. Here, we separated the CO emissions into different sources based on different CO/NOx emissions ratios for wood combustion and traffic, and inserted this information in the isotope mass balance equation. Accordingly, a highly significant agreement between measured and calculated δ18O-values of CO was found (r=0.67, p<0.001). While different proxies for wood combustion all have their uncertainties, our results indicate that the oxygen isotope ratio of CO (but not the carbon isotope ratio) is an independent sensitive tool for source attribution studies.


Sign in / Sign up

Export Citation Format

Share Document