scholarly journals An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

2015 ◽  
Vol 8 (12) ◽  
pp. 5315-5324 ◽  
Author(s):  
S. L. Pathirana ◽  
C. van der Veen ◽  
M. E. Popa ◽  
T. Röckmann

Abstract. A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol−1, or 1–3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol−1 for 100 mL of ambient air (185.4 nmol mol−1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.

2015 ◽  
Vol 8 (2) ◽  
pp. 2067-2092 ◽  
Author(s):  
S. L. Pathirana ◽  
C. van der Veen ◽  
M. E. Popa ◽  
T. Röckmann

Abstract. In the atmosphere, carbon monoxide (CO) is the major sink for the hydroxyl radical (OH •), has multiple anthropogenic and natural sources and considerable spatial and seasonal variability. Measurements of CO isotopic composition are useful in constraining the strengths of its individual source and sink processes and thus its global cycle. A fully automated system for δ13C and δ18O analysis has been developed to extract CO from an air sample, convert CO into carbon dioxide (CO2) using the Schütze reagent, and then determine the isotopic composition in an isotope ratio mass spectrometer (IRMS). The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is only 1–3% of the typical sample size. The repeatability is 0.1‰ for δ13C and 0.2‰ for δ18O. The peak area allows simultaneous determination of the mole fraction with an analytical repeatability of ~0.7 nmol mol−1 for 100 mL of typical ambient air (185.4 nmol mol−1 of CO). A single, automated, measurement is performed in 18 min, so multiple measurements can be combined conveniently to improve precision.


Author(s):  
Xing Wang ◽  
Henk G. Jansen ◽  
Haico Duin ◽  
Harro A. J. Meijer

AbstractThere are two officially approved methods for stable isotope analysis for wine authentication. One describes δ18O measurements of the wine water using Isotope Ratio Mass Spectrometry (IRMS), and the other one uses Deuterium-Nuclear Magnetic Resonance (2H-NMR) to measure the deuterium of the wine ethanol. Recently, off-axis integrated cavity output (laser) spectroscopy (OA-ICOS) has become an easier alternative to quantify wine water isotopes, thanks to the spectral contaminant identifier (SCI). We utilized an OA-ICOS analyser with SCI to measure the δ18O and δ2H of water in 27 wine samples without any pre-treatment. The OA-ICOS results reveal a wealth of information about the growth conditions of the wines, which shows the advantages to extend the official δ18O wine water method by δ2H that is obtained easily from OA-ICOS. We also performed high-temperature pyrolysis and chromium reduction combined with IRMS measurements to illustrate the “whole wine” isotope ratios. The δ18O results of OA-ICOS and IRMS show non-significant differences, but the δ2H results of both methods differ much more. As the δ2H difference between these two methods is mainly caused by ethanol, we investigated the possibility to deduce deuterium of wine ethanol from this difference. The results present large uncertainties and deviate from the obtained 2H-NMR results. The deviation is caused by the other constituents in the wine, and the uncertainty is due to the limited precision of the SCI-based correction, which need to improve to obtain the 2H values of ethanol as alternative for the 2H-NMR method.


2010 ◽  
Vol 5 (1) ◽  
pp. 11-14
Author(s):  
Hanik Humaida

The carbon isotope can be used to evaluate volcanism phenomenon of volcano. The study of carbon isotope of CO2 and CH4 was carried out in western Dieng Plateau by mass-spectrometer. Before analysis, sampel was separated by gas chromatography using a Porapak-Q column and a FID (Flame Ionization Detector) detector. The gas was oxidized by copper oxide at 850oC before being ionized in mass-spectrometer for isotope analysis. The CO2 content in Candradimuka crater (-4.10 O/OO), indicated that the gas may be as volcanic gas. The other CO2 from Sumber and western Gua Jimat, had isotope value  of -10.05 and -12.07 O/OO, respectively, indicating contamination from crustal and subduction material. The carbon isotope of CH4 gas from Pancasan village was -63.42 O/OO, that may be categorized as biogenic gas.   Keywords: isotope, CO2, CH4, Dieng.


2011 ◽  
Vol 4 (1) ◽  
pp. 101-133 ◽  
Author(s):  
A. Zuiderweg ◽  
R. Holzinger ◽  
T. Röckmann

Abstract. Isotope analysis can be a useful tool in constraining the budgets (sources and sinks) of atmospheric trace species and is increasingly applied for organic constituents. This may be useful in particular for investigating the oxidative capacity of the atmosphere and studying long-range. We present setup, testing and initial results from a new automated system for carbon stable isotope ratio measurements on C2 to C6 atmospheric hydrocarbons. The inlet system is flexible and allows analysis of trace gases from medium size to very large ambient air samples (5–300 L) without loss of compounds of interest. The first application of this system was the analysis of ambient air during a short campaign in August 2009 in Utrecht, the Netherlands. Results obtained agree well with previous research, but highlight the complex diurnal behavior of hydrocarbons in an urban environment.


Sign in / Sign up

Export Citation Format

Share Document