scholarly journals Validation and application of optimal ionospheric shell height model for single-site TEC estimation

2018 ◽  
Author(s):  
Jiaqi Zhao ◽  
Chen Zhou

Abstract. We recently proposed a method to establish optimal ionospheric shell height model based on the international GNSS service (IGS) station data and the differential code bias (DCB) provided by Center for Orbit Determination in Europe (CODE) during the time from 2003 to 2013. This method is very promising for DCB and accurate total electron content (TEC) estimation by comparing to traditional fixed shell height method. However, this method is basically feasible only for IGS stations. In this study, we investigate how to apply the optimal ionospheric shell height derived from IGS station to non-IGS stations or isolated GNSS receivers. The intuitional and practical method to estimate TEC of non-IGS stations is based on optimal ionospheric shell height derived from nearby IGS stations. To validate this method, we selected two dense networks of IGS stations located in US and Europe region. Two optimal ionospheric shell height models are established by two reference stations, namely GOLD and PTBB, which are located at the approximate center of two selected regions. The predicted daily optimal ionospheric shell heights by the two models are applied to other IGS stations around these two reference stations. Daily DCBs are calculated according to these two optimal shell heights and compared to respective DCBs released by CODE. The validation results of this method present that 1) Optimal ionospheric shell height calculated by IGS stations can be applied to its nearby non-IGS stations or isolated GNSS receivers for accurate TEC estimation. 2) As the distance away from the reference IGS station becomes larger, the DCB estimation error becomes larger. The relation between the DCB estimation error and the distance is generally linear.

2019 ◽  
Vol 37 (2) ◽  
pp. 263-271
Author(s):  
Jiaqi Zhao ◽  
Chen Zhou

Abstract. We recently proposed a method to establish an optimal ionospheric shell height model based on the international GNSS service (IGS) station data and the differential code bias (DCB) provided by the Center for Orbit Determination in Europe (CODE) during the time from 2003 to 2013. This method is very promising for DCB and accurate total electron content (TEC) estimation by comparing to the traditional fixed shell height method. However, this method is basically feasible only for IGS stations. In this study, we investigate how to apply the optimal ionospheric shell height derived from IGS station to non-IGS stations or isolated GNSS receivers. The intuitive and practical method to estimate TEC of non-IGS stations is based on optimal ionospheric shell height derived from nearby IGS stations. To validate this method, we selected two dense networks of IGS stations located in regions in the US and Europe. Two optimal ionospheric shell height models are established by two reference stations, namely GOLD and PTBB, which are located at the approximate center of two selected regions. The predicted daily optimal ionospheric shell heights by the two models are applied to other IGS stations around these two reference stations. Daily DCBs are calculated according to these two optimal shell heights and compared to respective DCBs released by CODE. The validation results of this method are as follows. (1) Optimal ionospheric shell height calculated by IGS stations can be applied to its nearby non-IGS stations or isolated GNSS receivers for accurate TEC estimation. (2) As the distance away from the reference IGS station becomes larger, the DCB estimation error becomes larger. The relation between the DCB estimation error and the distance is generally linear.


2015 ◽  
Vol 69 (4) ◽  
pp. 698-708 ◽  
Author(s):  
Mohamed Abdelazeem ◽  
Rahmi N. Çelik ◽  
Ahmed El-Rabbany

In this study, we develop a Multi-constellation Global Navigation Satellite System (GNSS) Receiver Differential Code Bias (MGR-DCB) model. The model estimates the receiver DCBs for the Global Positioning System (GPS), BeiDou and Galileo signals from the ionosphere-corrected geometry-free linear combinations of the code observations. In order to account for the ionospheric delay, a Regional Ionospheric Model (RIM) over Europe is developed. GPS observations from 60 International GNSS Servoce (IGS) and EUREF reference stations are processed in the Bernese-5·2 Precise Point Positioning (PPP) module to estimate the Vertical Total Electron Content (VTEC). The RIM has spatial and temporal resolutions of 1° × 1° and 15 minutes, respectively. The receiver DCBs for three stations from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) are estimated for three different days. The estimated DCBs are compared with the MGEX published values. The results show agreement with the MGEX values with mean difference and Root Mean Square Error (RMSE) values less than 1 ns. In addition, the combined GPS, BeiDou and Galileo VTEC values are evaluated and compared with the IGS Global Ionospheric Maps (IGS-GIM) counterparts. The results show agreement with the GIM values with mean difference and RMSE values less than 1 Total Electron Content Unit (TECU).


2020 ◽  
Vol 12 (21) ◽  
pp. 3496 ◽  
Author(s):  
Jiahao Zhong ◽  
Jiuhou Lei ◽  
Xinan Yue

Choi et al. (2019) analyzed the correlation between the ionospheric total electron content (TEC) and the Global Navigation Satellite System (GNSS) receiver differential code bias (DCB) and concluded that the long-term variations of the receiver DCB are caused by the corresponding variations in the ionosphere. Unfortunately, their method is problematic, resulting in conclusions that are not useful. The long-term variations of the Global Positioning System (GPS) DCBs are primarily attributed to the GPS satellite replacement with different satellite block series under the zero-mean constraint condition, rather than the ionospheric variability.


2020 ◽  
Vol 12 (21) ◽  
pp. 3510
Author(s):  
Byung-Kyu Choi ◽  
Dong-Hyo Sohn ◽  
Sang Jeong Lee

Choi et al. (2019) suggested that ionospheric total electron content (TEC) and receiver differential code bias (rDCB) stability have a strong correlation during a period of two years from 2014 to 2016. This article is a response to Zhong et al. (2020), who pointed out that the long-term variations of the GPS DCBs are mainly attributed to the satellite replacement rather than the ionospheric variability. In this issue, we investigated the center for orbit determination in Europe (CODE) Global Ionosphere Maps (GIM) products from 2000 to 2020. In this study, changes in TEC and receiver DCB (rDCB) root mean squares (RMS) at Bogota (BOGT) station still have a clear correlation. In addition, there was a moderate correlation between satellite DCB RMS and rDCB RMS. As a result, we suggest that rDCB can be affected simultaneously by GPS sDCB as well as ionospheric activity.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 443
Author(s):  
Ye Wang ◽  
Lin Zhao ◽  
Yang Gao

In the use of global navigation satellite systems (GNSS) to monitor ionosphere variations by estimating total electron content (TEC), differential code biases (DCBs) in GNSS measurements are a primary source of errors. Satellite DCBs are currently estimated and broadcast to users by International GNSS Service (IGS) using a network of GNSS hardware receivers which are inside structure fixed. We propose an approach for satellite DCB estimation using a multi-spacing GNSS software receiver to analyze the influence of the correlator spacing on satellite DCB estimates and estimate satellite DCBs based on different correlator spacing observations from the software receiver. This software receiver-based approach is called multi-spacing DCB (MSDCB) estimation. In the software receiver approach, GNSS observations with different correlator spacings from intermediate frequency datasets can be generated. Since each correlator spacing allows the software receiver to output observations like a local GNSS receiver station, GNSS observations from different correlator spacings constitute a network of GNSS receivers, which makes it possible to use a single software receiver to estimate satellite DCBs. By comparing the MSDCBs to the IGS DCB products, the results show that the proposed correlator spacing flexible software receiver is able to predict satellite DCBs with increased flexibility and cost-effectiveness than the current hardware receiver-based DCB estimation approach.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5489 ◽  
Author(s):  
Wei Li ◽  
Longqiang Huang ◽  
Shaocheng Zhang ◽  
Yanju Chai

As global navigation satellite system (GNSS)stations are sparsely distributed in oceanic area, oceanic areas usually have lower precision than continental areas on a global ionosphere maps (GIM). On the other hand, space-borne observations like satellite altimetry (SA) and ionospheric radio occultation (IRO) have substantial dual-frequency observations in oceanic areas, which could be used for total electron content (TEC) retrieval. In this paper, the Jason-2 SA and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) IRO products were used to assess the precision of IGS GIM products. Both the systematic biases and scaling factors between the international GNSS service (IGS) GIM TEC and space-borne TEC were calculated, and the statistical results show that the biases and the scaling factors obviously vary under different temporal-spatial conditions. This analysis shows that these differences are variable with diurnal and latitude factors, that is, the differences in biases during the day time are higher than those during the night time, and larger biases are experienced at lower latitude areas than at high latitude areas. The results also show that in the southern hemisphere middle-high latitude area and some other central oceanic areas, the space-borne TEC values are even higher than GIM TEC values. As the precision of space-borne TEC should be evenly distributed around different areas on Earth, it can be explain that the TEC in these areas is undervalued by the current GIM model, and the space-borne SA and IRO techniques could be used as complementary observations to improve the accuracy and reliability of TEC values in these areas.


2020 ◽  
Vol 10 ◽  
pp. 11 ◽  
Author(s):  
Claudio Cesaroni ◽  
Luca Spogli ◽  
Angela Aragon-Angel ◽  
Michele Fiocca ◽  
Varuliator Dear ◽  
...  

We introduce a novel empirical model to forecast, 24 h in advance, the Total Electron Content (TEC) at global scale. The technique leverages on the Global Ionospheric Map (GIM), provided by the International GNSS Service (IGS), and applies a nonlinear autoregressive neural network with external input (NARX) to selected GIM grid points for the 24 h single-point TEC forecasting, taking into account the actual and forecasted geomagnetic conditions. To extend the forecasting at a global scale, the technique makes use of the NeQuick2 Model fed by an effective sunspot number R12 (R12eff), estimated by minimizing the root mean square error (RMSE) between NARX output and NeQuick2 applied at the same GIM grid points. The novel approach is able to reproduce the features of the ionosphere especially during disturbed periods. The performance of the forecasting approach is extensively tested under different geospatial conditions, against both TEC maps products by UPC (Universitat Politècnica de Catalunya) and independent TEC data from Jason-3 spacecraft. The testing results are very satisfactory in terms of RMSE, as it has been found to range between 3 and 5 TECu. RMSE depend on the latitude sectors, time of the day, geomagnetic conditions, and provide a statistical estimation of the accuracy of the 24-h forecasting technique even over the oceans. The validation of the forecasting during five geomagnetic storms reveals that the model performance is not deteriorated during disturbed periods. This 24-h empirical approach is currently implemented on the Ionosphere Prediction Service (IPS), a prototype platform to support different classes of GNSS users.


2018 ◽  
Author(s):  
Mostafa Rabah ◽  
Ahmed Sedeek

Abstract. Global ionosphere maps (GIM) are generated on a daily basis at CODE using data from about 400 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content (VTEC) is modeled in a solar-geomagnetic reference frame using a Spherical Harmonics Expansion “SHE” up to degree and order 15. To cover the holes of the first GIM computation stage existing in the North Africa and over the Oceans resulting a shortage of GNSS station in North Africa, an optimum spatial-temporal interpolation technique was developed to cover these holes (Krankowski and Hernandez-Pajares, 2016). The current paper evaluates the ionospheric correction by Global Ionospheric Maps, GIM, provided in (IONEX) files produced by International GNSS Services “IGS”. The evaluation is performed based on investigating the effect of a given GIM ionospheric correction on kinematic relative positioning solutions. The evaluation was done using several baselines of different lengths in Egypt. The results show that there is no significant effect of the provided GIM values on the solution of kinematic processing. The results confirm that although there is a lack of International GNSS Service (IGS stations) over North Africa, GIMs have no effect in mitigating ionospheric error. A new value for the ionosphere correction VTEC values was obtained by a regional, developed algorithm based on zero-differenced phase ionospheric delay (ZDPID) (Tawfeek et al., 2018). These new values of VTEC were fed into GIMs for the specified stations data. A useful result was obtained for correcting the ionospheric error over kinematic solution of many baseline lengths up to 300 km which demonstrates validity of the proposed evaluation method.


2019 ◽  
Vol 11 (6) ◽  
pp. 706 ◽  
Author(s):  
Jiandi Feng ◽  
Baomin Han ◽  
Zhenzhen Zhao ◽  
Zhengtao Wang

Research on total electron content (TEC) empirical models is one of the important topics in the field of space weather services. Global TEC empirical models based on Global Ionospheric Maps (GIMs) TEC data released by the International GNSS Service (IGS) have developed rapidly in recent years. However, the accuracy of such global empirical models has a crucial restriction arising from the non-uniform accuracy of IGS TEC data in the global scope. Specifically, IGS TEC data accuracy is higher on land and lower over the ocean due to the lack of stations in the latter. Using uneven precision GIMs TEC data as a whole for model fitting is unreasonable. Aiming at the limitation of global ionospheric TEC modelling, this paper proposes a new global ionospheric TEC empirical model named the TECM-GRID model. The model consists of 5183 sections, corresponding to 5183 grid points (longitude 5°, latitude 2.5°) of GIM. Two kinds of single point empirical TEC models, SSM-T1 and SSM-T2, are used for TECM-GRID. According to the locations of grid points, the SSM-T2 model is selected as the sub-model in the Mid-Latitude Summer Night Anomaly (MSNA) region, and SSM-T1 is selected as the sub-model in other regions. The fitting ability of the TECM-GRID model for modelling data was tested in accordance with root mean square (RMS) and relative RMS values. Then, the TECM-GRID model was validated and compared with the NTCM-GL model and Center for Orbit Determination in Europe (CODE) GIMs at time points other than modelling time. Results show that TECM-GRID can effectively describe the Equatorial Ionization Anomaly (EIA) and the MSNA phenomena of the ionosphere, which puts it in good agreement with CODE GIMs and means that it has better prediction ability than the NTCM-GL model.


Sign in / Sign up

Export Citation Format

Share Document